To investigate the antidiabetic effect of isopulegol in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic rats. Animals were made diabetic by feeding HFD for 4 weeks followed by single intraperitoneal injection of STZ (35 mg/kg b.w.; 0.1 M citrate buffer; pH 4.0). Plasma insulin, haemoglobin and glycogen content were decreased while increased glucose and glycated haemoglobin were observed in diabetic rats. An increase in glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenol pyruvate carboxykinase with a decrease in hexokinase, glucose-6-phosphate dehydrogenase and glycogen synthase activities was observed in diabetic rats. The expression of cyclic response element binding protein (CREB) was increased in the hepatic tissue of diabetic rats. Isopulegol dose dependently (50, 100 and 200 mg/kg b.w.) improved insulin secretion, glucose tolerance and decreased glucose levels in diabetic-treated rats. At the effective dose of 100 mg/kg b.w., isopulegol restored the activities of metabolic enzymes and down-regulated CREB expression. Thus, isopulegol restored glucose homeostasis through its insulinotrophic property.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13813455.2019.1638415DOI Listing

Publication Analysis

Top Keywords

diabetic rats
20
observed diabetic
8
isopulegol restored
8
diabetic
6
rats
6
glucose
5
modulatory isopulegol
4
isopulegol hepatic
4
hepatic key
4
key enzymes
4

Similar Publications

Diabetes is a detriment to male reproductive health, notably through its capacity to diminish secretion from accessory glands such as the seminal vesicles and prostate, which are crucial for reproductive function. Curcumin, a naturally derived polyphenol renowned for its anti-inflammatory and antioxidative attributes, has demonstrated potential in mitigating tissue damage across various organs in diabetic patients. Despite its established benefits, the specific impact of curcumin on seminal vesicle damage in the context of diabetes remains underexplored.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization.

Biomaterials

January 2025

Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:

The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.

View Article and Find Full Text PDF

Objectives: This study aimed to determine the effect of 8-week high-intensity interval training (HIIT) on oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes (T2D). The study focused on examining the role of proliferator-activated receptor gamma co-activator 1α (PGC1α)/Kelch-like ECH-associated protein Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.

Materials And Methods: Twenty-eight 8-week-old Wistar rats were randomly assigned to one of four groups (n=7): control (Con), type 2 diabetes (T2D), exercise (Ex), and exercise + type 2 diabetes (Ex+T2D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!