3D cell culture and microfluidics both represent powerful tools for replicating critical components of the cell microenvironment; however, challenges involved in the integration of the two and compatibility with standard tissue culture protocols still represent a steep barrier to widespread adoption. Here we demonstrate the use of engineered surface roughness in the form of microfluidic channels to integrate 3D cell-laden hydrogels and microfluidic fluid delivery. When a liquid hydrogel precursor solution is pipetted onto a surface containing open microfluidic channels, the solid/liquid/air interface becomes pinned at sharp edges such that the hydrogel forms the "fourth wall" of the channels upon solidification. We designed Cassie-Baxter microfluidic surfaces that leverage this phenomenon, making it possible to have barrier-free diffusion between the channels and the hydrogel; in addition, sealing is robust enough to prevent leakage between the two components during fluid flow, but the sealing can also be reversed to facilitate recovery of the cell/hydrogel material after culture. This method was used to culture MDA-MB-231 cells in collagen, which remained viable and proliferated while receiving media exclusively through the microfluidic channels over the course of several days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996068PMC
http://dx.doi.org/10.1021/acs.langmuir.9b01163DOI Listing

Publication Analysis

Top Keywords

microfluidic channels
12
cell culture
8
culture
5
microfluidic
5
channels
5
cassie-baxter surfaces
4
surfaces reversible
4
reversible barrier-free
4
barrier-free integration
4
integration microfluidics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!