Mechanical behavior of nonwoven non-crosslinked fibrous mats with adhesion and friction.

Soft Matter

Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Published: July 2019

We present a study of the mechanical behavior of planar fibrous mats stabilized by inter-fiber adhesion. Fibers of various degrees of tortuosity and of infinite and finite length are considered in separate models. Fibers are randomly distributed, are not cross-linked, and interact through adhesion and friction. The variation of structural parameters such as the mat thickness and the mean segment length between contacts along given fibers with the strength of adhesion is determined. These systems are largely dissipative in that most of the work performed during deformation is dissipated frictionally and only a small fraction is stored as strain energy. The response of the mats to tensile loading has three regimes: a short elastic regime in which no sliding at contacts is observed, a well-defined sliding regime characterized by strain hardening, and a rapid stiffening regime at larger strains. The third regime is due to the formation of stress paths after the fiber tortuosity is pulled out and is absent in mats of finite length fibers. Networks of finite length fibers lose stability during the second regime of deformation. The scaling of the yield stress, which characterizes the transition between the first and the second regimes, and of the second regime's strain hardening modulus, with system parameters such as the strength of adhesion and friction and the degree of fiber tortuosity are determined. The strength of mats of finite length fibers is also determined as a function of network parameters. These results are expected to become useful in the design of electrospun mats and other planar fibrous non-cross-linked networks.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm00658cDOI Listing

Publication Analysis

Top Keywords

finite length
16
adhesion friction
12
length fibers
12
mechanical behavior
8
fibrous mats
8
planar fibrous
8
strength adhesion
8
strain hardening
8
fiber tortuosity
8
mats finite
8

Similar Publications

Different angles and central axis length combinations of the reading man flap were studied to determine the optimal angles and central axis length combinations for reducing the stress on the flap tip. First, different models and corresponding finite element models of flaps with different angles and central axial lengths were established by ANSYS software. Then, skin flap transfer was achieved through forced displacement, and the stress distributions of the flap with different angles and central axial lengths under different materials were obtained.

View Article and Find Full Text PDF

Objectives: To assess the effect of occlusion and implant number/position on stress distribution in Kennedy Class II implant-assisted removable partial denture (IARPD).

Materials And Methods: IARPDs were designed in six models: with one implant (bone level with a platform of 4 mm and length of 10 mm) at the site of (I) canine, (II) between first and second premolars, (III) first molar, (IV) second molar, or two implants at the sites of (V) canine-first molar, and (VI) canine-second molar. A conventional RPD served as control.

View Article and Find Full Text PDF

In this paper, the transfer matrix method is used to study the dispersion of acoustic waves in a finite periodic expansion chambers system with a defect. Two kinds of structures are studied. The first one is formed by expansion chambers, which are symmetrical concerning a defect, and the second one is asymmetrical with a defect.

View Article and Find Full Text PDF

Mechanical finite element analysis of needle tip shape to develop insertable polymer-based microneedle without plastic deformation.

J Mech Behav Biomed Mater

January 2025

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), 3-25-14 Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.

Bioabsorbable polymer microneedles are highly attractive as modernized medical devices for efficient yet safe transdermal drug delivery and biofluid biopsy. In this study, the elastoplastic deformation of polymer microneedles, having a high aspect ratio (over 5-10), is investigated using poly(lactic) acid polymer approved by the United States Food and Drug Administration to be generally considered safe. Microneedle geometries are comprehensively analyzed for tip geometries comprising the tip diameter (ϕ) and tip taper length (l) of 100 designs.

View Article and Find Full Text PDF

From Semi-Infinite to Thin-Layer Diffusion─Effects of Finite Mass Transport on the Electrochemical Response of Redox Probes: Implications for Electroanalytical Measurements.

Anal Chem

January 2025

Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia 30100, Spain.

Electrochemistry in confined environments, that is, involving experimental configurations with spatial restrictions that affect the overall mass transport, is becoming a very attractive way of carrying out electroanalytical measurements for sensing, especially for the so-called thin-layer (TL) configuration, which ideally allows the complete conversion of the analytes under study in small volumes and short times. To improve the understanding of this kind of situation, general expressions for the current-potential-time and charge-potential-time responses of charge transfer processes taking place under finite diffusion conditions with two different configurations (no mass renovation, bounded diffusion; and effective mass renovation, unbounded diffusion) are discussed in this work. By using these expressions, it is possible to establish accurate limits for the attainment of TL conditions and to conclude that for bounded conditions, the charge is a more adequate quantity for electroanalytical purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!