A biomimetic approach towards phorone sesterterpenoids.

Org Biomol Chem

The School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.

Published: July 2019

We report an investigation towards a unified total synthesis of the Korean sponge derived sesterterpenoids, phorones A (1) and B (2), via a biomimetic strategy. This work has established a new synthetic strategy to the parent ansellane sesterterpenoid skeleton with unanticipated diversion to a biogenetically related pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ob00745hDOI Listing

Publication Analysis

Top Keywords

biomimetic approach
4
approach phorone
4
phorone sesterterpenoids
4
sesterterpenoids report
4
report investigation
4
investigation unified
4
unified total
4
total synthesis
4
synthesis korean
4
korean sponge
4

Similar Publications

Biomimetic 3D Prototyping of Hierarchically Porous Multilayered Membranes for Enhanced Oil-Water Filtration.

ACS Appl Mater Interfaces

January 2025

Associate Professor of Mechanical Engineering, College of Engineering, University of Georgia (UGA), 302 E. Campus Rd., Athens 30602, United States.

This study introduces a biomimetic approach to 3D printing multilayered hierarchical porous membranes (MHMs) using Direct Ink Writing (DIW) technology. Fabricated through a fast layer-by-layer printing process with varying concentrations of pore-forming agents, the produced MHMs mimic the hierarchical pore structure and filtration capabilities of natural soil systems. As a result, the 3D-printed MHMs achieved an impressive oil rejection rate of 99.

View Article and Find Full Text PDF

3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.

View Article and Find Full Text PDF

Artificial molecular motors in biological applications.

Front Mol Biosci

January 2025

Key Laboratory of Thyroid Disease, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.

Molecular motors are the cornerstone for the maintenance of living systems and mediate almost all fundamental processes involved in cellular trafficking. The intricate mechanisms underlying natural molecular motors have been elucidated in detail, inspiring researchers in various fields to construct artificial systems with multi-domain applications. This review summarises the characteristics of molecular motors, biomimetic approaches for their design and operation, and recent biological applications.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!