Monolayer transition metal dichalcogenides (TMDCs) are an ideal platform for multi-carrier bound states, the excitons and trions of which have been well identified and investigated. However, the formation and identification of biexcitons with certain configurations are more complicated. Here, we report a strategy to generate the hole-trion bound state, i.e. excited-state biexcitons, in a graphene/WS van der Waals heterostructure, the formation of which is attributed to the charge transfer and exciton dissociation at the hetero-interface. The biexciton nature is confirmed by excitation-power dependent, helicity-resolved, and time-resolved photoluminescence measurements. This hole-trion bound state features a thermal activation energy of ∼32 meV, rendering a stable excited-state biexciton emission up to 330 K. Moreover, the emission behavior of the excited-state biexcitons can be tuned by modifying the charge transfer process at the hetero-interface via electrostatic gating. Our results will benefit to further understanding the complex multi-carrier interactions in 2D semiconductors and related heterostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr02862eDOI Listing

Publication Analysis

Top Keywords

excited-state biexcitons
12
biexcitons graphene/ws
8
graphene/ws van
8
van der
8
der waals
8
hole-trion bound
8
bound state
8
charge transfer
8
interface charge-transfer
4
charge-transfer induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!