Much effort was devoted towards the rational design of ultrastrong transition metal borides (TMBs) with remarkable mechanical properties and excellent stabilities, owing to promising applications in machining, drilling tools and protective coatings for the aerospace industry. Although an enormous number of investigations have been performed on these TMBs under normal conditions, studies on the stability and mechanical strength in harsh high-pressure environments, which are critical for safe service behavior and a realistic understanding of stabilities and strengthening mechanisms, are yet nearly absent. In this work, taking 5d TMB2 (TM = Hf, Ta, W, Re, Os, Ir and Pt) as an illustration, we performed comprehensive high-throughput first-principles screening for thermodynamically stable and metastable structures under various pressures. Four experimentally observed structures are found to be thermodynamically feasible for most 5d TMB2 (TM = Hf, Ta, W, Re, Os and Ir) at 0 and 100 GPa. By exploiting orbital-decomposed electronic structures, we reveal that the pressure-induced stabilization and phase transitions of 5d TMB2 can be rationalized by the splitting of bonding and antibonding states around the Fermi level. Further investigations on the pressure-induced strengthening indicate that 5d TMB2 in the hP6[194] structure exhibit a profound strengthening effect under high pressure, which can be rationalized by the proposed strengthening factor η, but η fails in the oP6[59] structure due to the changed instability modes at different pressures. These findings suggest the necessity to explore the plasticity parameters for a realistic understanding of pressure-induced strengthening in TMBs, providing a strong argument for rules based on bond parameters at equilibrium in designing strong solids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp02847a | DOI Listing |
Sci Adv
January 2025
School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions.
View Article and Find Full Text PDFNanophotonics
June 2024
Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
The full information about the interaction between a quantum emitter and an arbitrary electromagnetic environment is encoded in the so-called spectral density. We present an approach for describing such interaction in any coupling regime, providing a Lindblad-like master equation for the emitter dynamics when coupled to a general nanophotonic structure. Our framework is based on the splitting of the spectral density into two terms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Strong steels are primarily fabricated by introducing spatial obstacles (e.g., stacking faults and precipitates) that inhibit dislocation slips under stress to achieve high strength.
View Article and Find Full Text PDFNeurology
August 2024
From the Cardiff University Brain Research Imaging Centre (C.L.M., D.J., K.G., A.D., C.M.W.T.), Cardiff University; Neuroscience and Mental Health Research Institute (C.L.M., K.J.P.), Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine; North Bristol NHS Trust (K.S.-K.), United Kingdom; and Image Sciences Institute (C.M.W.T.), University Medical Center Utrecht, the Netherlands.
Adv Mater
September 2024
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
Supramolecular adhesion material systems based on small molecules have shown great potential to unite the great contradiction between strong adhesion and reversibility. However, these material systems suffer from low adhesion strength/narrow adhesion span, limited designability, and single interaction due to fewer covalent bond content and action sites in small molecules. Herein, an ultrahigh-strength and large-span reversible adhesive enabled by a branched oligomer controllable self-aggregation strategy is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!