Polychlorinated biphenyl (PCB) detection in the environment is significant for both environmental protection and human health. Herein, a highly sensitive aptamer sensor has been established by employing a 2,3',5,5'-tetrachlorobiphenyl (PCB72) targeting aptamer as a highly specific recognition element and a gold/silver (Au@Ag) nanocomposite as the surface-enhanced Raman spectroscopy (SERS) substrate for detecting environmental PCB72. The Au@Ag nanoparticles (NPs) exhibit a strong SERS enhancement and provide an efficient substrate for immobilizing the PCB72 aptamer and Raman signal labelled molecule, 4-mercaptobenzoic acid (4-MBA). The targeted PCB72 could competitively bind with the PCB72 aptamer, resulting in a few aptamers sticking to the Au@Ag NPs and the "hot spot" strengthening effect of the substrate. Under optimal conditions, this aptamer sensor exhibits great performance with high sensitivity, excellent selectivity and stability for the monitoring of PCB72, which shows an excellent linear correlation ranging from 1 to 1000 pg mL-1 with a limit of detection of 0.3 pg mL-1. Furthermore, this aptamer assay exhibits high specificity and selectivity for PCB72 with the detection error of less than 0.27 for other PCBs and 0.21 for other interfering species, even if the coexisting interferents are 100-fold concentration in the system. Additionally, the recognition mechanism of the binding of aptamers to PCB72 is analyzed via UV-vis spectroscopy and molecular docking simulations, which suggest that PCB72 could insert into the aptamers. Furthermore, this method is successfully utilized for PCB72 detection in real water samples with a simple pre-treatment. In general, this work provides a new and effective method using an environmental aptamer sensor for rapid and sensitive PCB72 detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9an00848a | DOI Listing |
Mikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, 518045, PR China.
Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Flavokavain B (FKB), a hepatotoxic chalcone from (kava), has raised safety concerns due to its role in disrupting redox homeostasis and inducing apoptosis in hepatocytes. Conventional chromatographic methods for FKB detection, while sensitive, are costly and impractical for field applications. In this work, DNA aptamers were selected using the library-immobilized method and high-throughput sequencing.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Ames National Laboratory, Mechanical Engineering Department, Iowa State University, Ames, IA 50014, USA.
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
The widespread use of thiamethoxam has led to pesticide residues that have sparked global concerns regarding ecological and human health risks. A pressing requirement exists for a detection method that is both swift and sensitive. Herein, we introduced an innovative fluorescence biosensor constructed from alendronic acid (ADA)-modified upconversion nanoparticles (UCNPs) linked with magnetic nanoparticles (MNPs) via aptamer recognition for the detection of thiamethoxam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!