Age-related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC-1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen-related receptor α-dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC-1α. As a result, PGC-1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro-apoptotic effects of ceramide and thapsigargin were blunted by PGC-1α in muscle cells. Accordingly, mice with muscle-specific gain-of-function and loss-of-function of PGC-1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC-1α on muscle function and overall health span in aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718523PMC
http://dx.doi.org/10.1111/acel.12993DOI Listing

Publication Analysis

Top Keywords

peroxisome proliferator-activated
8
proliferator-activated receptor
8
receptor coactivator
8
coactivator 1α
8
sarcoplasmic reticulum
8
reticulum stress
8
cell death
8
skeletal muscle
8
muscle aging
8
muscle function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!