Impact of reduced-representation sequencing protocols on detecting population structure in a threatened marsupial.

Mol Biol Rep

Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.

Published: October 2019

Reduced-representation sequencing methods have wide utility in conservation genetics of non-model species. Several methods are now available that reduce genome complexity to examine a wide range of markers in a large number of individuals. We produced two datasets collected using different laboratory techniques, comprising a common set of samples from the greater bilby (Macrotis lagotis). We examined the impact of differing data filtering thresholds on downstream population inferences. We found that choice of restriction enzyme and data filtering thresholds, especially the rate of allowable missing data, impacted our ability to detect population structure. Estimates of F were robust to alterations in laboratory and bioinformatic protocols while principal coordinates and STRUCTURE analyses showed variation according to the number of loci and percent missing data. We advise researchers using reduced-representation sequencing in conservation projects to examine a range of data thresholds, and follow these through to downstream population inferences. Multiple measures of population differentiation should be used in order to fully understand how data filtering thresholds influence the final dataset, paying particular attention to the impact of allowable missing data. Our results indicate that failure to follow these checks could impact conclusions drawn, and conservation management decisions made.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-04966-6DOI Listing

Publication Analysis

Top Keywords

reduced-representation sequencing
12
data filtering
12
filtering thresholds
12
missing data
12
population structure
8
downstream population
8
population inferences
8
allowable missing
8
data
7
population
5

Similar Publications

Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.

View Article and Find Full Text PDF

Feed efficiency significantly impacts the economics of beef production and is influenced by biological and environmental factors. The rumen microbiota plays a crucial role in efficiency, with studies increasingly focused on its relationship with different rearing systems. This study analyzed 324 rumen samples from bulls and steers categorized as high and low efficiency based on residual feed intake.

View Article and Find Full Text PDF

Epigenetic and Cellular Reprogramming of Doxorubicin-Resistant MCF-7 Cells Treated with Curcumin.

Int J Mol Sci

December 2024

Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.

The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the evolution of genomic variation is essential for creating effective conservation strategies for threatened species, focusing on connectivity, demographic changes, and environmental adaptation.
  • The study analyzed genomic variation in Fraxinus latifolia, a riparian tree facing threats from the invasive emerald ash borer, by sequencing over 1000 individuals from 61 populations.
  • Results showed strong population structure and low genetic diversity, suggesting that this patchy distribution could hinder the species' long-term evolutionary potential, underscoring the importance of conserving genomic diversity for future restoration efforts.
View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!