Circular RNAs (circRNAs) have displayed dysregulated expression in several types of cancer. Nevertheless, their function and underlying mechanisms in papillary thyroid cancer (PTC) remains largely unknown. This study aimed to describe the regulatory mechanisms in PTC. The expression profile of circRNA was download from the Gene Expression Omnibus (GEO) database. The mRNA and miRNA data of PTC was downloaded from The Cancer Genome Atlas (TCGA) database. The circRNA-miRNA-mRNA network by Cytoscape. The interactions between proteins were analyzed using the STRING database and hubgenes were identified using MCODE plugin. Then, we conducted a circRNA-miRNA-hubgenes regulatory module. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis were conducted using R packages "Clusterprofile". We identified 14 differential expression circRNAs (DEcircRNA), 3106 differential expression mRNAs (DEmRNA), 142 differential expression miRNAs (DEmiRNA) and in PTC. Twelve circRNAs, 33 miRNAs, and 356 mRNAs were identified to construct the ceRNA network of PTC. PPI network and module analysis identified 5 hubgenes. Then, a circRNA-miRNA-hubgene subnetwork was constructed based on the 2 DEcircRNAs, 3 DEmiRNAs, and 4 DEmRNAs. GO and KEGG pathway analysis indicated DEmRNAs might be associated with PTC onset and progression. These ceRNAs are critical in the pathogenesis of PTC and may serve as future therapeutic biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12253-019-00697-y | DOI Listing |
J Tissue Eng
January 2025
Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Rotator cuff tendon injuries often lead to shoulder pain and dysfunction. Traditional treatments such as surgery and physical therapy can provide temporary relief, but it is difficult to achieve complete healing of the tendon, mainly because of the limited repair capacity of the tendon cells. Therefore, it is particularly urgent to explore new treatment methods.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.
View Article and Find Full Text PDFFront Physiol
January 2025
Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
Introduction: Interleukin-10 (IL-10) is a potent immunomodulatory cytokine widely explored as a therapeutic agent for diseases, including myocardial infarction (MI). High-dose IL-10 treatment may not achieve expected outcomes, raising the question of whether IL-10 has dose-dependency, or even uncharted side-effects from overdosing. We hypothesized that IL-10 has dose-dependent effects on macrophage (Mφ) phenotypic transition and cardiac remodeling after MI.
View Article and Find Full Text PDFFront Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Introduction: Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States.
Foxp3-expressing CD4 regulatory T (Treg) cells play a crucial role in suppressing autoimmunity, tolerating food antigens and commensal microbiota, and maintaining tissue integrity. These multifaceted functions are guided by environmental cues through interconnected signaling pathways. Traditionally, Treg fate and function were believed to be statically determined by the forkhead box protein Foxp3 that directly binds to DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!