Targeting the 5-HT2C Receptor in Biological Context and the Current State of 5-HT2C Receptor Ligand Development.

Curr Top Med Chem

Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States.

Published: October 2019

Serotonin (5-HT) 5-HT2C receptor (5-HT2CR) is recognized as a critical mediator of diseaserelated pathways and behaviors based upon actions in the central nervous system (CNS). Since 5-HT2CR is a class A G protein-coupled receptor (GPCR), drug discovery efforts have traditionally pursued the activation of the receptor through synthetic ligands with agonists proposed for the treatment of obesity, substance use disorders and impulse control disorders while antagonists may add value for the treatment of anxiety, depression and schizophrenia. The most significant agonist discovery to date is the FDAapproved anti-obesity medication lorcaserin. In recent years, efforts towards developing other mechanisms to enhance receptor function have resulted in the discovery of Positive Allosteric Modulators (PAMs) for the 5-HT2CR, with several molecule series now reported. The biological significance and context for signaling and function of the 5-HT2CR, and the current status of 5-HT2CR agonists and PAMs are discussed in this review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761005PMC
http://dx.doi.org/10.2174/1568026619666190709101449DOI Listing

Publication Analysis

Top Keywords

5-ht2c receptor
12
receptor
6
5-ht2cr
5
targeting 5-ht2c
4
receptor biological
4
biological context
4
context current
4
current state
4
state 5-ht2c
4
receptor ligand
4

Similar Publications

GW117 induces anxiolytic effects by improving hippocampal functions.

Pharmacol Biochem Behav

November 2024

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

GW117 functions as both an MT1/MT2 receptor agonist and a 5-HT2C receptor antagonist. This study aimed to investigate the anxiolytic effects of GW117 through behavioral assessments, including the open field test and novelty-suppressed feeding test (NSFT) within a chronic unpredictable mild stress (CUMS) model. GW117 was administered via oral gavage for 21 days to evaluate its sustained anxiolytic effects, with behavioral tests including the NSFT, the Vogel-conflict test, and the O-maze test.

View Article and Find Full Text PDF

Background: BMAL1, a key regulator of circadian rhythms, plays a multifaceted role in brain function. However, the complex interplay between BMAL1, memory, neuroinflammation, and neurotransmitter regulation remains poorly understood. To investigate these interactions, we conducted a study using BMAL1-haplodeficient mice (BMAL1).

View Article and Find Full Text PDF

Objectives: Clozapine is an atypical antipsychotic crucial for treatment-resistant schizophrenia, characterised by its multi-receptor targeting, including serotonin (5-HT2A, 5-HT2C) and dopamine (D1, D2, D3, D4) receptors, among others. This broad mechanism is effective against positive symptoms of schizophrenia with a lower incidence of extrapyramidal side effects. However, clozapine poses significant haematological risks, notably agranulocytosis, necessitating stringent blood monitoring protocols.

View Article and Find Full Text PDF

Rationale: Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood.

Objectives: In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats.

View Article and Find Full Text PDF

The effect of cancer-associated mutations on ligand binding and receptor function - A case for the 5-HT receptor.

Eur J Pharmacol

December 2024

Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC, Leiden, the Netherlands; Oncode Institute, 2333 CC, Leiden, the Netherlands. Electronic address:

The serotonin 5-HT receptor is a G protein-coupled receptor (GPCR) mainly expressed in the central nervous system. Besides regulating mood, appetite, and reproductive behavior, it has been identified as a potential target for cancer treatment. In this study, we aimed to investigate the effects of cancer patient-derived 5-HT receptor mutations on ligand binding and receptor functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!