Porous glasses from metal-organic frameworks (MOFs) represent a new class of functional inorganic-organic materials, which have been proposed for applications ranging from solid electrolytes to radioactive waste storage. So far, just a few zeolitic imidazolate frameworks (ZIFs), a subset of MOFs, have been reported to melt and the structural and compositional requirements for MOF melting and glass formation are poorly understood. Here, we show how the melting point of the prototypical ZIF-4/ZIF-62(M) frameworks (composition M(im)(bim); M = Co, Zn; im = imidazolate; bim = benzimidazolate) can be controlled systematically by adjusting the molar ratio of the two imidazolate-type linkers im and bim. By covering the entire range from = 0 to 0.35, we unveil a delicate transition from ZIF materials showing sequential amorphization/recrystallization to derivatives exhibiting coherent melting and a liquid phase that is stable over a large temperature window. The melting point of this ZIF system is a direct function of and can be lowered from ca. 430 °C to only 370 °C, by far the lowest melting point reported for a three-dimensional porous MOF. On the basis of our results, we postulate compositional requirements for ZIF melting and glass formation, which may guide the search for other meltable ZIFs. Moreover, gas physisorption experiments establish that the ZIF glasses adsorb technologically relevant C and C hydrocarbons. Importantly, the adsorption kinetics are much faster for propylene compared to propane and are also dependent on the im:bim ratio, thus demonstrating the potential of these ZIF glasses for applications in gas separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b05558 | DOI Listing |
J Am Chem Soc
January 2025
Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Chemistry, College of Science, University of Diyala, Baquba, Diyala, Iraq.
The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China.
Horizontal frost damage is a significant hazard threatening the safety of structures in cold regions. The frozen fringe represents the transitional zone between unfrozen and frozen soil. Its formation and migration not only directly influence the distribution of water during freezing but also play a significant role in the frost heave behavior.
View Article and Find Full Text PDFNat Commun
January 2025
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, Lausanne, Switzerland.
The plastic waste crisis is among humanity's most urgent challenges. However, widespread adoption of sustainable plastics is hindered by their often inadequate processing characteristics and performance. Here, we introduce a bio-inspired strategy for the modification of a representative high molar mass, biodegradable aliphatic polyester that helps overcome these limitations and remains effective at molar masses far greater than the entanglement molar mass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!