The influence of chlorinated water on the global and local aging behavior of polypropylene (PP) was investigated for three differently stabilized PP grades consisting of the same PP base polymer. While one of the PP grades contained only a processing stabilizer (PP-S0), the other two were modified with a primary phenolic antioxidant (PP-S1) and a combination of a primary phenolic antioxidant and a hindered amine stabilizer (PP-S3). To study global aging effects, micro-sized specimens were pre-exposed to chlorinated water (5 mg/L free chlorine) at 60 °C for up to 750 h. Over the entire exposure period, significant material aging was detected by monitoring a continuous decrease in stabilizer content, oxidation induction temperature, mean molar mass, and mechanical strain at break. In terms of aging resistance and ultimate mechanical performance, PP-S1 was found to outperform the other two material formulations under these test conditions. Moreover, superimposed mechanical-environmental fatigue tests with cracked round bar specimens were carried out with the three PP grades in non-chlorinated (0 mg/L free chlorine) and chlorinated (5 mg/L free chlorine) water at 80 °C and 95 °C to study local crack tip aging effects. While the fatigue crack growth resistance substantially deteriorated for all three materials in chlorinated water, a significantly stronger effect was found for the higher temperature, with crack growth rates at a given stress intensity factor range in chlorinated water being ca. 30 to 50 times faster than in non-chlorinated water, depending on the material. Molar mass measurements of material samples taken from various positions of the tested CRB specimens provided clear evidence of enhanced local crack tip aging due to the chlorinated water environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680636 | PMC |
http://dx.doi.org/10.3390/polym11071165 | DOI Listing |
Nat Commun
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
Discharge of wastewater containing nitrate (NO) disrupts aquatic ecosystems even at low concentrations. However, selective and rapid reduction of NO at low concentration to dinitrogen (N) is technically challenging. Here, we present an electrified membrane (EM) loaded with Sn pair-atom catalysts for highly efficient NO reduction to N in a single-pass electrofiltration.
View Article and Find Full Text PDFChemosphere
January 2025
Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan. Electronic address:
Global concern regarding transformation products (TPs) derived from contaminants, including pesticides, in the environment and during water treatment has been growing markedly. In the present study, we investigated the anti-acetylcholinesterase (AChE) activity of an aqueous solution of the organophosphorus insecticide disulfoton, a toxicological endpoint for determining the acceptable daily intake of disulfoton, both in the presence and the absence of metabolism during chlorination. Disulfoton rapidly reacted with free chlorine and completely disappeared within 0.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
Dissolved organic matter (DOM) is the primary precursor of disinfection products (DBPs) during chlorination. However, the compositional characteristics of DOM transformation during the chlorination process in different source waters and its relationship to cytotoxicity remain understudied. Here, we used high-resolution mass spectrometry to evaluate chlorination-induced molecular-level changes in DOM derived from different surface water sources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Wolkite University, P. O. Box: 07, Wolkite, Ethiopia.
This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!