The O-heterocycles, benzo-1,4-dioxane, phthalan, isochroman, 2,3-dihydrobenzofuran, benzofuran, and dibenzofuran are important building blocks with considerable medical application for the production of pharmaceuticals. Cytochrome P450 monooxygenase (P450) 3 (BM3) wild type (WT) from has low to no conversion of the six O-heterocycles. Screening of in-house libraries for active variants yielded P450 BM3 CM1 (R255P/P329H), which was subjected to directed evolution and site saturation mutagenesis of four positions. The latter led to the identification of position R255, which when introduced in the P450 BM3 WT, outperformed all other variants. The initial oxidation rate of nicotinamide adenine dinucleotide phosphate (NADPH) consumption increased ≈140-fold (WT: 8.3 ± 1.3 min; R255L: 1168 ± 163 min), total turnover number (TTN) increased ≈21-fold (WT: 40 ± 3; R255L: 860 ± 15), and coupling efficiency, ≈2.9-fold (WT: 8.8 ± 0.1%; R255L: 25.7 ± 1.0%). Computational analysis showed that substitution R255L (distant from the heme-cofactor) does not have the salt bridge formed with D217 in WT, which introduces flexibility into the I-helix and leads to a heme rearrangement allowing for efficient hydroxylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651506PMC
http://dx.doi.org/10.3390/ijms20133353DOI Listing

Publication Analysis

Top Keywords

p450 bm3
16
directed evolution
8
p450
5
evolution p450
4
bm3
4
bm3 functionalization
4
functionalization aromatic
4
aromatic o-heterocycles
4
o-heterocycles o-heterocycles
4
o-heterocycles benzo-14-dioxane
4

Similar Publications

Production of derivatives of α-terpineol by bacterial CYP102A1 enzymes.

Biotechnol Lett

November 2024

School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.

The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • * The process begins with engineering a biosynthetic pathway to produce drimenol, followed by the use of an engineered enzyme for a specific hydroxylation reaction.
  • * Finally, a nickel-catalyzed reductive coupling technique is employed to synthesize various drimane meroterpenoids in a streamlined and enantiospecific way, which could lead to further optimization of their biological activities.
View Article and Find Full Text PDF

Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid.

Biotechnol J

November 2024

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.

Murideoxycholic acid (MDCA), as a significant secondary bile acid derived from the metabolism of α/β-muricholic acid in rodents, is an important component in maintaining the bile acid homeostasis. However, the biosynthesis of MDCA remains a challenging task. Here, we present the development of cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, employing semi-rational protein engineering technique.

View Article and Find Full Text PDF

(+)-3,6-Epoxymaaliane: A Novel Derivative of (+)-Bicyclogermacrene Oxidation Catalyzed by CYP450 BM3-139-3 and Its Variants.

Chembiochem

November 2024

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.

(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from Bacillus megaterium can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes.

View Article and Find Full Text PDF
Article Synopsis
  • Experimental methods in single-molecule enzymology enable scientists to analyze the unique properties and function of individual enzyme molecules during their catalytic processes.
  • The study utilizes solid-state nanopores, specifically a 5 nm pore in a silicon nitride chip, to observe the performance of cytochrome P450 BM3, a model enzyme in monooxygenase systems.
  • By measuring ion current changes while the enzyme catalyzes laurate hydroxylation, the research showed that the BM3 enzyme is active for up to 1500 seconds, with potential applications in developing sensitive detectors for enzyme studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!