Resonant Grating without a Planar Waveguide Layer as a Refractive Index Sensor.

Sensors (Basel)

Department of Electrooptics and Photonics Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.

Published: July 2019

Dielectric grating-based sensors are usually based on the guided mode resonance (GMR) obtained using a thin planar waveguide layer (PWL) adjacent to a thin subwavelength grating layer. In this work, we present a detailed investigation of thick subwavelength dielectric grating structures that exhibit reflection resonances above a certain thickness without the need for the waveguide layer, showing great potential for applications in biosensing and tunable filtering. Analytic and numerical results are thoroughly discussed, as well as an experimental demonstration of the structure as a chemical sensor in the SWIR (short wave infrared) spectral range (1200-1800 nm). In comparison to the GMR structure with PWL, the thick grating structure has several unique properties: (i) It gives higher sensitivity when the spaces are filled, with the analyte peaking at certain space values due to an increase in the interaction volume between the analyte and the evanescent optical field between the grating lines; (ii) the TM (transverse magnetic) resonance, in certain cases, provides a better figure of merit; (iii) the sensitivity increases as the grating height increases; (iii) the prediction of the resonance locations based on the effective medium approximation does not give satisfactory results when the grating height is larger than a certain value, and the invalidity becomes more severe as the period increases; (iv) a sudden increase in the Q-factor of the resonance occurs at a specific height value accompanied by the high local field enhancement (~10) characteristic of a nano-antenna type pattern. Rigorous numerical simulations of the field distribution are presented to explain the different observed phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651248PMC
http://dx.doi.org/10.3390/s19133003DOI Listing

Publication Analysis

Top Keywords

waveguide layer
12
planar waveguide
8
grating height
8
grating
6
resonant grating
4
grating planar
4
layer
4
layer refractive
4
refractive sensor
4
sensor dielectric
4

Similar Publications

This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.

View Article and Find Full Text PDF

Sensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.

View Article and Find Full Text PDF

Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays─Creating Guided Modes for Enhanced Directionality.

ACS Nano

December 2024

Department of Physics of Information in Matter and Center for Nanophotonics, NWO-I Institute AMOLF, Science Park 104, NL 1098XG Amsterdam, The Netherlands.

Phosphor-converted micro-light emitting diodes (micro-LEDs) are a crucial technology for display applications but face significant challenges in light extraction because of the high refractive index of the blue pump die chip. In this study, we design and experimentally demonstrate a nanophotonic approach that overcomes this issue, achieving up to a 3-fold increase in light extraction efficiency. Our approach involves engineering the local density of optical states (LDOS) to generate quasi-guided modes within the phosphor layer by strategically inserting a thin low-index spacer in combination with a metasurface for mode extraction.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

On chip control and detection of complex SPP and waveguide modes based on plasmonic interconnect circuits.

Nanophotonics

November 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

Optical interconnects, leveraging surface plasmon modes, are revolutionizing high-performance computing and AI, overcoming the limitations of electrical interconnects in speed, energy efficiency, and miniaturization. These nanoscale photonic circuits integrate on-chip light manipulation and signal conversion, marking significant advancements in optoelectronics and data processing efficiency. Here, we present a novel plasmonic interconnect circuit, by introducing refractive index matching layer, the device supports both pure SPP and different hybrid modes, allowing selective excitation and transmission based on light wavelength and polarization, followed by photocurrent conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!