A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers. | LitMetric

Cationic diarylporphyrins: In vitro versatile anticancer and antibacterial photosensitizers.

J Photochem Photobiol B

Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, VA, Italy.

Published: August 2019

The visible light combined with photosensitizers (PSs) is exploited in both antitumoral and antimicrobial fields inducing a photo-oxidative stress within the target cells. Among the different PSs, porphyrins belong to the family of the most promising compounds to be used in clinical photodynamic applications. Although in the last years many porphyrins have been synthesised and tested, only a few reports concern the in vitro effects of the 5,15-diarylporphyrins. In this work, the activity of four 5,15-diarylporphyrins (compounds 7-10), bearing alkoxy-linked pyridinium appendixes, have been tested on cancer cell lines and against bacterial cultures. Among the synthetized PSs, compounds 7 and 9 are not symmetrically substituted porphyrins showing one cationic charge tethered at the end of one 4C or 8C carbon chains, respectively. On the other hand, compounds 8 and 10 are symmetrically substituted and show two chains of C4 and C8 carbons featuring a cationic charge at the end of both chains. The dicationic 8 and 10 were more hydrophilic than monocationic 7 and 9, outlining that the presence of two pyridinium salts have a higher impact on the solubility in the aqueous phase than the lipophilic effect exerted by the length of the alkyl chains. Furthermore, these four PSs showed a similar rate of photobleaching, irrespective of the length and number of chains and the number of positive charges. Among the eukaryotic cell lines, the SKOV3 cells were particularly sensitive to the photodynamic activity of all the tested diarylporphyrins, while the HCT116 cells were found more sensitive to PSs bearing C4 chain (7 and 8), regardless the number of cationic charges. The photo-induced killing effect of these porphyrins was also tested against two different bacterial cultures. As expected, the Gram positive Bacillus subtilis was more sensitive than the Gram negative Escherichia coli, and the dicationic porphyrin 8, bearing two C4 chains, was the most efficient on both microorganisms. In conclusion, the new compound 8 seems to be an optimal candidate to deepen as versatile anticancer and antibacterial photosensitizer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2019.111548DOI Listing

Publication Analysis

Top Keywords

versatile anticancer
8
anticancer antibacterial
8
cell lines
8
bacterial cultures
8
compounds symmetrically
8
symmetrically substituted
8
cationic charge
8
cells sensitive
8
chains
6
pss
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!