A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with αβ-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death. | LitMetric

Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with αβ-Integrin-Ligand to Efficiently Induce Intracellular Heat after Alternating Magnetic Field Exposition, Triggering Glioma Cell Death.

ACS Appl Mater Interfaces

Department of Energy, Environment and Health , Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) , Sor Juana Ines de la Cruz 3 , 28049 Madrid , Spain.

Published: July 2019

Despite the potential of magnetic nanoparticles (NPs) to mediate intracellular hyperthermia when exposed to an alternating magnetic field (AMF), several studies indicate that the intracellular heating capacity of magnetic NPs depends on factors such as cytoplasm viscosity, nanoparticle aggregation within subcellular compartments, and dipolar interactions. In this work, we report the design and synthesis of monodispersed flowerlike superparamagnetic manganese iron oxide NPs with maximized SAR (specific absorption rate) and evaluate their efficacy as intracellular heaters in the human tumor-derived glioblastoma cell line U87MG. Three main strategies to tune the particle anisotropy of the core and the surface to reach the maximum heating efficiency were adopted: (1) varying the crystalline anisotropy by inserting a low amount of Mn in the inverse spinel structure, (2) varying the NP shape to add an additional anisotropy source while keeping the superparamagnetic behavior, and (3) maximizing NP-cell affinity through conjugation with a biological targeting molecule to reach the NP concentration required to increase the temperature within the cell. We investigate possible effects produced by these improved NPs under the AMF ( = 96 kHz, = 47 kA/m) exposure in the glioblastoma cell line U87MG by monitoring the expression of gene and reactive oxygen species (ROS) production, as both effects have been described to be induced by increasing the intracellular temperature. The induced cell responses include cellular membrane permeabilization and rupture with concomitant high ROS appearance and expression, followed by cell death. The responses were largely limited to cells that contained the NPs exposed to the AMF. Our results indicate that the developed strategies to optimize particle anisotropy in this work are a promising guidance to improve the heating efficiency of magnetic NPs in the human glioma cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b08318DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
alternating magnetic
8
magnetic field
8
glioma cell
8
cell death
8
magnetic nps
8
glioblastoma cell
8
cell u87mg
8
particle anisotropy
8
heating efficiency
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!