Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This systematic review aims to analyze the state-of-the-art regarding interaction modalities used on serious games for upper limb rehabilitation. A systematic search was performed in IEEE Xplore and Web of Science databases. PRISMA and QualSyst protocols were used to filter and assess the articles. Articles must meet the following inclusion criteria: they must be written in English; be at least four pages in length; use or develop serious games; focus on upper limb rehabilitation; and be published between 2007 and 2017. Of 121 articles initially retrieved, 33 articles met the inclusion criteria. Three interaction modalities were found: vision systems (42.4%), complementary vision systems (30.3%), and no-vision systems (27.2%). Vision systems and no-vision systems obtained a similar mean QualSyst (86%) followed by complementary vision systems (85.7%). Almost half of the studies used vision systems as the interaction modality (42.4%) and used the Kinect sensor to collect the body movements (48.48%). The shoulder was the most treated body part in the studies (19%). A key limitation of vision systems and complementary vision systems is that their device performances might be affected by lighting conditions. A main limitation of the no-vision systems is that the range-of-motion in angles of the body movement might not be measured accurately. Due to a limited number of studies, fruitful areas for further research could be the following: serious games focused on finger rehabilitation and trauma injuries, game difficulty adaptation based on user's muscle strength and posture, and multisensor data fusion on interaction modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/g4h.2018.0129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!