The nature of the first prebiotic compartments and their possible minimal molecular composition is of great importance in the origin of life scenarios. Current protocell model membranes are proposed to be lipid-based. This paradigm has several shortcomings such as limited membrane stability of monoacyl lipid-based membranes (e.g., fatty acids), missing pathways to synthesize protocell membrane components (e.g., phospholipids) under early earth conditions, and the requirement for different classes of molecules for the formation of compartments and the catalysis of reactions. Amino acids on the other hand are known to arise and persist with remarkable abundance under early earth conditions since the fundamental Miller-Urey experiments. They were also postulated early to form protocellular structures, for example, proteinoid capsules. Here, we present a protocell model constituted by membranes assembled from amphiphilic proteins based on prebiotic amino acids. Self-assembled dynamic protein membrane-based compartments (PMBCs) are impressively stable and compatible with prevalent cellular membrane constituents forming protein-only or protein-lipid hybrid membranes. They can embed processes essential for extant living cells, such as enclosure of molecules, membrane fusion, phase separation, and complex biosynthetic elements from modern cells demonstrating "upward" compatibility. Our findings suggest that prebiotic PMBCs represent a new type of protocell as a possible ancestor of current lipid-based cells. The presented prebiotic PMBC model can be used to design artificial cells, important for the study of structural, catalytic, and evolutionary pathways related to the emergence of life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b00445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!