Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A deep learning approach has been taken to improve detection characteristics of surface plasmon microscopy (SPM) of light scattering. Deep learning based on the convolutional neural network algorithm was used to estimate the effect of scattering parameters, mainly the number of scatterers. The improvement was assessed on a quantitative basis by applying the approach to SPM images formed by coherent interference of scatterers. It was found that deep learning significantly improves the accuracy over conventional detection: the enhancement in the accuracy was shown to be significantly higher by almost 6 times and useful for scattering by polydisperse mixtures. This suggests that deep learning can be used to find scattering objects effectively in the noisy environment. Furthermore, deep learning can be extended directly to label-free molecular detection assays and provide considerably improved detection in imaging and microscopy techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b00683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!