Biomedicinally important histone lysine methyltransferases (KMTs) catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) cosubstrate to lysine residues in histones and other proteins. Herein, experimental and computational investigations on human KMT-catalyzed ethylation of histone peptides by using S-adenosylethionine (AdoEth) and Se-adenosylselenoethionine (AdoSeEth) cosubstrates are reported. MALDI-TOF MS experiments reveal that, unlike monomethyltransferases SETD7 and SETD8, methyltransferases G9a and G9a-like protein (GLP) do have the capacity to ethylate lysine residues in histone peptides, and that cosubstrates follow the efficiency trend AdoMet>AdoSeEth>AdoEth. G9a and GLP can also catalyze AdoSeEth-mediated ethylation of ornithine and produce histone peptides bearing lysine residues with different alkyl groups, such as H3K9meet and H3K9me2et. Molecular dynamics and free energy simulations based on quantum mechanics/molecular mechanics potential supported the experimental findings by providing an insight into the geometry and energetics of the enzymatic methyl/ethyl transfer process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064923 | PMC |
http://dx.doi.org/10.1002/cbic.201900359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!