Certain chemotherapeutics (e.g., oxaliplatin, OXA) can evoke effective antitumor immunity responses by inducing immunogenic cell death (ICD). Unfortunately, tumors always develop multiple immunosuppressive mechanisms, such as the upregulation of immunosuppressive factors, to counteract the effects of immunogenic chemotherapy. Indoleamine 2,3-dioxygenase-1 (IDO1), a tryptophan catabolic enzyme overexpressed in tumor-draining lymph nodes (TDLNs) and tumor tissues, plays a pivotal role in the generation of the immunosuppressive microenvironment. Reversing IDO1-mediated immunosuppression may strengthen the ICD-induced immune response. Herein, we developed a nanoenabled approach for IDO1 pathway interference, which is accomplished by delivering IDO1 siRNA to both TDLNs and tumor tissues with the help of cationic lipid-assisted nanoparticles (CLANs). We demonstrated that the contemporaneous administration of OXA and CLAN could achieve synergetic antitumor effects via promoting dendritic cell maturation, increasing tumor-infiltrating T lymphocytes and decreasing the number of regulatory T cells in a subcutaneous colorectal tumor model. We further proved that this therapeutic strategy is applicable for the treatment of orthotopic pancreatic tumors and offers a strong immunological memory effect, which can provide protection against tumor rechallenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b01807 | DOI Listing |
ACS Pharmacol Transl Sci
October 2024
Pharmacology Section, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy.
Am J Cancer Res
September 2024
School of Life Science, Anhui Medical University Hefei 230032, Anhui, China.
Cellular senescence is an irreversible state of growth arrest, and induction of senescence is considered a potential therapeutic strategy against cancer. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme catabolizing L-tryptophan into kynurenine, plays a key role in tumor immune tolerance. However, the roles of IDO1 in cellular senescence and chemoresistance remain elusive.
View Article and Find Full Text PDFProgrammed death-1 (PD-1) acts as a T cell checkpoint and is important in controlling T cell exhaustion. Blocking the intercommunication across PD-1 and PD-L1 is promising for advanced lung cancer treatment. However, the response rate requires being strengthened.
View Article and Find Full Text PDFFront Pharmacol
May 2023
Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Osteosarcoma (OS) is the most common primary malignant tumor originating in bone. Immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) participates in tumor immune tolerance and promotes tumor progression, while the study of IDO1 in OS is limited. Immunohistochemistry analysis was performed to test the expression of IDO1 and Ki67.
View Article and Find Full Text PDFCancer Metab
May 2023
Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA.
Background: The impact of non-small cell lung cancer (NSCLC) metabolism on the immune microenvironment is not well understood within platinum resistance. We have identified crucial metabolic differences between cisplatin-resistant (CR) and cisplatin-sensitive (CS) NSCLC cells with elevated indoleamine 2,3-dioxygenase-1 (IDO1) activity in CR, recognized by increased kynurenine (KYN) production.
Methods: Co-culture, syngeneic, and humanize mice models were utilized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!