Molecular imaging using bone targeted tracers has been used in clinical practice for almost fifty years and still plays an essential role in the diagnosis and follow-up of bone metastases. It includes both [99mTc]bisphosphonates for bone scan and [18F]NaF for positron emission tomography/computed tomography (PET/CT) which are very sensitive to detect osteoblastic activity, but it is important to consider several aspects to increase the specificity of reported findings (such as specific tracer characteristics and mechanism of action, patient's clinical history, common metastatic patterns, changes after treatment, limitations of the technique, variations and pitfalls). This will enable useful information for clinical management being provided in the report. Furthermore, iatrogenic skeletal adverse events are common and they should also be identified, as they have impact on patient's quality of life. This review makes a brief summary of the mechanism of action of bone targeted tracers, followed by a discussion of classic patterns of bone metastasis, treatment response assessment and iatrogenic skeletal complications. The value of hybrid imaging techniques with bone targeted tracers, including single photon emission computed tomography and PET/CT is also explored. The final part summarizes new bone targeted tracers with superior imaging characteristics that are being developed, and which may further enhance the applications of radionuclide bone imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.23736/S1824-4785.19.03198-4 | DOI Listing |
N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.
View Article and Find Full Text PDFFront Pharmacol
December 2024
College of Pharmacy, Jinan University, Guangzhou, China.
Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.
View Article and Find Full Text PDFBone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.
View Article and Find Full Text PDFUnlabelled: Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. ( ) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during infection and the variation of the response in different macrophage subtypes remain obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!