In tendon, type-I collagen assembles together into fibrils, fibers, and fascicles that exhibit a wavy or crimped pattern that uncrimps with applied tensile loading. This structural property has been observed across multiple tendons throughout aging and may play an important role in tendon viscoelasticity, response to fatigue loading, healing, and development. Previous work has shown that crimp is permanently altered with the application of fatigue loading. This opens the possibility of evaluating tendon crimp as a clinical surrogate of tissue damage. The purpose of this study was to determine how fatigue loading in tendon affects crimp and mechanical properties throughout aging and between tendon types. Mouse patellar tendons (PT) and flexor digitorum longus (FDL) tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties at P150 and P570 days of age to model mature and aged tendon phenotypes (N = 10-11/group). Tendon type, fatigue loading, and aging were found to differentially affect tendon mechanical and crimp properties. FDL tendons had higher modulus and hysteresis, whereas the PT showed more laxity and toe region strain throughout aging. Crimp frequency was consistently higher in FDL compared with PT throughout fatigue loading, whereas the crimp amplitude was cycle dependent. This differential response based on tendon type and age further suggests that the FDL and the PT respond differently to fatigue loading and that this response is age-dependent. Together, our findings suggest that the mechanical and structural effects of fatigue loading are specific to tendon type and age in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:36-42, 2020.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917867PMC
http://dx.doi.org/10.1002/jor.24407DOI Listing

Publication Analysis

Top Keywords

fatigue loading
32
tendon type
16
tendon
12
crimp properties
12
type age
12
fatigue
9
loading
9
crimp
8
age mice
8
tendon crimp
8

Similar Publications

Peak Weight Acceptance, Mid Stance Trough, and Peak Push-Off Force Symmetry Are Decreased in Older Adults Compared With Young Adults.

J Appl Biomech

January 2025

Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.

Gait abnormalities affect an individual's ability to navigate the world independently and occur in 10% of older adults. Examining age-related gait symmetry in nonlaboratory environments is necessary for understanding mobility limitations in older adults. This study examined gait symmetry differences between older and younger adults using in-shoe force sensors.

View Article and Find Full Text PDF

The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.

View Article and Find Full Text PDF

The purpose was to create a systematic approach for analyzing data to improve predictive models for fatigue and neuromuscular performance in volleyball, with potential applications in other sports. The study aimed to assess whether average, peak, or peak-to-average ratios of countermovement jump (CMJ) force plate metrics exhibit stronger correlations and determine which metric most effectively predicts performance. Data were obtained from nine division I female volleyball athletes over a season, recording daily jump loads (total jumps, jump counts >38.

View Article and Find Full Text PDF

Taking the titanium alloy wing-body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing-body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground-air-ground load tests, and the test piece fractured under the ground-air-ground load tests.

View Article and Find Full Text PDF

Fatigue failure poses a serious challenge for ensuring the operational safety of critical components subjected to cyclic/random loading. In this context, various machine learning (ML) models have been increasingly explored, due to their effectiveness in analyzing the relationship between fatigue life and multiple influencing factors. Nevertheless, existing ML models hinge heavily on numeric features as inputs, which encapsulate limited information on the fatigue failure process of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!