During natural behavior, animals actively gather information that is relevant for learning or actions; however, the mechanisms of active sampling are rarely investigated. We tested parietal neurons involved in oculomotor control in a task in which monkeys made saccades to gather visual information relevant to a subsequent action. We show that the neurons encode, before the saccade, the information gain (reduction in decision uncertainty) that the saccade was expected to bring for the following action. Sensitivity to information gain correlates with the monkeys' efficiency at processing the information in the post-saccadic fixation, but is independent of neuronal reward sensitivity. Reward sensitivity, in turn, is unreliable across task contexts, inconsistent with the view that the cells encode economic utility. The findings suggest that parietal cells involved in oculomotor decisions show uncertainty-dependent boosts of neural gain that facilitate the implementation of active sampling policies, including the selection of relevant cues and the efficient use of the information delivered by these cues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6660422 | PMC |
http://dx.doi.org/10.1038/s41593-019-0440-1 | DOI Listing |
Chin J Traumatol
December 2024
Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:
Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.
Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location.
View Article and Find Full Text PDFHear Res
December 2024
Clinics of Otolaryngology, Hannover Medical School, Hearing Center Hannover (DHZ), Karl-Wiechert-Allee 3, 30625 Hannover, Germany; Institute of AudioNeuroTechnology (VIANNA) & Dept. of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany. Electronic address:
Objective: We investigated auditory working-memory using behavioural measures and electroencephalography (EEG) in adult Cochlear Implant (CI) users with varying degrees of CI performance.
Methods: 24 adult CI listeners (age: M = 61.38, SD = 12.
Int J Surg
December 2024
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Aneurysmal subarachnoid hemorrhage (aSAH) can lead to cognitive impairment, but underlying neural mechanisms remain to be elucidated.
Materials And Methods: To predict long-term cognitive impairment after aSAH, resting electroencephalography (EEG) was measured in 112 patients hospitalized with a diagnosis of aSAH (n = 66) or unruptured intracranial aneurysms (UIA; controls) (n = 46). A neuropsychological battery was administered 8 to 24 months after discharge.
Physiol Behav
December 2024
Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:
Objectives: This study investigated the effects of environmental enrichment (EE) on the behavior and histological alterations of rats with barrel cortex damage.
Methods: Forty-eight adult male rats were divided into Control (Ctrl), Lesion, Lesion+EE.S (Lesion+Standard Enriched Environment, and Lesion+EE.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!