The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.2 Å resolution cryo-EM structure of the Drosophila melanogaster spastin hexamer with a polyglutamate peptide bound in its central pore. Two electropositive loops arranged in a double-helical staircase coordinate the substrate sidechains. The structure reveals how concurrent nucleotide and substrate binding organizes the conserved spastin pore loops into an ordered network that is allosterically coupled to oligomerization, and suggests how tubulin tail engagement activates spastin for microtubule disassembly. This allosteric coupling may apply generally in organizing AAA+ protein translocases into their active conformations. We show that this allosteric network is essential for severing and is a hotspot for HSP mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761829 | PMC |
http://dx.doi.org/10.1038/s41594-019-0257-3 | DOI Listing |
Protein Sci
January 2025
Department of Chemistry, Columbia University, New York, New York, USA.
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.
View Article and Find Full Text PDFBrain
December 2024
Neuroimmunology Program, Fundació Clínic per la Recerca Biomèdica - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), Barcelona 08036, Spain.
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a disorder mediated by autoantibodies against the GluN1 subunit of NMDAR. It occurs with severe neuropsychiatric symptoms that often improve with immunotherapy. Clinical studies and animal models based on patients' antibody transfer or NMDAR immunization suggest that the autoantibodies play a major pathogenic role.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
Understanding the intricate interplay between structural features and signal-processing events is crucial for unravelling the mechanisms of biomolecular systems. G protein-coupled receptors (GPCRs), a pervasive protein family in humans, serve a wide spectrum of vital functions. TAS2Rs, a subfamily of GPCRs, play a primary role in recognizing bitter molecules and triggering events leading to the perception of bitterness, a crucial defence mechanism against spoiled or poisonous food.
View Article and Find Full Text PDFbioRxiv
December 2024
R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA.
Biochemical interactions at membranes are the starting points for cell signaling networks. But bimolecular reaction kinetics are difficult to experimentally measure on 2-dimensional membranes and are usually measured in volumetric assays. Membrane tethering produces confinement and steric effects that will significantly impact binding rates in ways that are not readily estimated from volumetric measurements.
View Article and Find Full Text PDFFront Mol Biosci
November 2024
Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
While many researchers can design knockdown and knockout methodologies to remove a gene product, this is mainly untrue for new chemical inhibitor designs that empower multifunctional DNA Damage Response (DDR) networks. Here, we present a robust Goldilocks (GL) computational discovery protocol to efficiently innovate inhibitor tools and preclinical drug candidates for cellular and structural biologists without requiring extensive virtual screen (VS) and chemical synthesis expertise. By computationally targeting DDR replication and repair proteins, we exemplify the identification of DDR target sites and compounds to probe cancer biology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!