AI Article Synopsis

  • A significant number of natural products are being explored as potential anticancer agents due to their chemical reactivity and functional groups.
  • Approximately 20% of synthetic cytotoxic compounds with Michael acceptor groups were found to inhibit proteasome activity, leading to a typical cellular response seen with proteasome inhibition.
  • The study revealed that some compounds bind to the proteasome's USP14, causing cell death associated with antineoplastic activity, particularly demonstrated in zebrafish embryos.

Article Abstract

A large number of natural products have been advocated as anticancer agents. Many of these compounds contain functional groups characterized by chemical reactivity. It is not clear whether distinct mechanisms of action can be attributed to such compounds. We used a chemical library screening approach to demonstrate that a substantial fraction (~20%) of cytotoxic synthetic compounds containing Michael acceptor groups inhibit proteasome substrate processing and induce a cellular response characteristic of proteasome inhibition. Biochemical and structural analyses showed binding to and inhibition of proteasome-associated cysteine deubiquitinases, in particular ubiquitin specific peptidase 14 (USP14). The results suggested that compounds bind to a crevice close to the USP14 active site with modest affinity, followed by covalent binding. A subset of compounds was identified where cell death induction was closely associated with proteasome inhibition and that showed significant antineoplastic activity in a zebrafish embryo model. These findings suggest that proteasome inhibition is a relatively common mode of action by cytotoxic compounds containing Michael acceptor groups and help to explain previous reports on the antineoplastic effects of natural products containing such functional groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614553PMC
http://dx.doi.org/10.1038/s41598-019-46168-xDOI Listing

Publication Analysis

Top Keywords

proteasome inhibition
12
natural products
8
functional groups
8
michael acceptor
8
acceptor groups
8
compounds
6
proteasome
5
cytotoxic unsaturated
4
unsaturated electrophilic
4
electrophilic compounds
4

Similar Publications

Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis.

View Article and Find Full Text PDF

Artemisinin is a sesquiterpene lactone derived from the plant L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs.

View Article and Find Full Text PDF

P4HA3 depletion induces ferroptosis and inhibits colorectal cancer growth by stabilizing ACSL4 mRNA.

Biochem Pharmacol

January 2025

Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China; Department of General Surgery, Jiangnan University Medical Center, Wuxi, China. Electronic address:

Colorectal cancer (CRC) is a malignancy with high global incidence and mortality rates, posing a serious threat to human health. Despite favorable outcomes following early detection and surgical intervention, the asymptomatic nature of CRC often results in delayed diagnoses, limiting surgical treatment options. Furthermore, effective therapeutic drugs for CRC remain lacking in clinical practice, highlighting an urgent need to identify novel therapeutic targets.

View Article and Find Full Text PDF

Aspirin-based PROTACs as COX-2 degraders for anti-inflammation.

Bioorg Med Chem

January 2025

Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China. Electronic address:

Cyclooxygenase-2 (COX-2) is a key enzyme in the biosynthesis of prostaglandins and plays a special role in the process of inflammatory response. COX-2 is a target of non-steroidal anti-inflammatory drugs (NSAIDs), which can effectively relieve inflammation, pain and fever responses by inhibiting COX-2. Despite the significant study progress of inhibitors targeting COX-2, the development of COX-2 degraders remains insufficient.

View Article and Find Full Text PDF

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!