Small Heat shock proteins (sHsp) are a group of chaperone proteins. Under conditions of stress, the expression of sHsp is increased. Therefore, they are implicated in the pathogenesis of various autoimmune-mediated disorders and cancer. The purpose of this study was to analyze sHsp expression in exosomes from patients with gynecologic cancers and correlate these results with markers of cytotoxic immune response. The study group included patients with ovarian cancer, endometrial cancer, and patients with endometriosis. The levels of sHsps and cytotoxic markers were analyzed in serum, peritoneal fluid and exosomes using ELISA method. We found the highest levels of sHsp in exosomes from patients with ovarian cancer, but they were also elevated in patients with endometrial cancer and endometriosis. Moreover, we identified the presence of small Hsps in serum and peritoneal fluid in all study groups, but again the highest level was in patients with ovarian cancer. Small Hsps expression levels were positively correlated with markers of cytotoxic immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614356PMC
http://dx.doi.org/10.1038/s41598-019-46221-9DOI Listing

Publication Analysis

Top Keywords

exosomes patients
12
patients ovarian
12
ovarian cancer
12
small heat
8
heat shock
8
shock proteins
8
patients gynecologic
8
gynecologic cancers
8
markers cytotoxic
8
cytotoxic immune
8

Similar Publications

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication.

View Article and Find Full Text PDF

Hepatoma cell-derived exosomal SNORD52 mediates M2 macrophage polarization by activating the JAK2/STAT6 pathway.

Discov Oncol

January 2025

Department of Hepatobiliary Pancreatic Splenic Surgery, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.

Background: A recent study revealed the oncogenic role of box C/D small nucleolar RNA 52 (SNORD52) in hepatocellular carcinoma (HCC) by facilitating the aggressive phenotypes of hepatoma cells. However, the potential role of exosomal SNORD52 in macrophage polarization during HCC progression remains poorly understood.

Methods: Exosomes were isolated from hepatoma cells.

View Article and Find Full Text PDF

Background: We previously described the enrichment of plasma exosome metabolites in CRPC, PCa, and TFC cohorts, and found significant differences in pyrimidine metabolites. The PMGs is associated with the clinical prognosis of several cancers, but its biological role in PCa is still unclear.

Methods: This study extracted 98 reliable PMGs, and analyzed their somatic mutations, expression levels, and prognostic significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!