Proteins can aggregate in response to stresses, including hyperosmotic shock. Formation and disassembly of aggregates is a relatively slow process. We describe a novel instant response of the cell to hyperosmosis, during which chaperones and other proteins form numerous foci with properties uncharacteristic of classical aggregates. These foci appeared/disappeared seconds after shock onset/removal, in close correlation with cell volume changes. Genome-wide and targeted testing revealed chaperones, metabolic enzymes, P-body components and amyloidogenic proteins in the foci. Most of these proteins can form large assemblies and for some, the assembled state was pre-requisite for participation in foci. A genome-wide screen failed to identify genes whose absence prevented foci participation by Hsp70. Shapes of and interconnections between foci, revealed by super-resolution microscopy, indicated that the foci were compressed between other entities. Based on our findings, we suggest a new model of cytosol architecture as a collection of numerous gel-like regions suspended in a liquid network. This network is reduced in volume in response to hyperosmosis and forms small pockets between the gel-like regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679407PMC
http://dx.doi.org/10.1242/bio.044529DOI Listing

Publication Analysis

Top Keywords

hyperosmotic shock
8
proteins form
8
gel-like regions
8
foci
7
analysis novel
4
novel hyperosmotic
4
response
4
shock response
4
response suggests
4
suggests 'beads
4

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.

View Article and Find Full Text PDF

Deciphering how natural selection emerges from demographic differences among genotypes, and reciprocally how evolution affects population dynamics, is key to understanding population responses to environmental stress. This is especially true in non-trivial ecological scenarios, such as programmed cell death (PCD) in unicellular organisms, which can lead to massive population decline in response to stress. To understand how selection may operate on this trait, we exposed monocultures and mixtures of two closely related strains of the microalga , one of which induces PCD, to multiple cycles of hyper-osmotic shocks, and tracked demography and selection throughout.

View Article and Find Full Text PDF

Quantification of bacterial shape using moment invariants enables distinguishing populations during cellular plasmolysis.

MethodsX

December 2024

Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí 78216, Mexico.

The analysis of geometrical cell shape is fundamental to understand motility, development, and responses to external stimuli. The moment invariants framework quantifies cellular shape and size, although its applicability has not been explored for rod-shaped bacteria. In this work, we use moment invariants to evaluate the extent of cell shape change (projected area and volume) during plasmolysis, as cells are subjected to hyperosmotic shock.

View Article and Find Full Text PDF

p38α and p38β regulate osmostress-induced apoptosis.

J Biol Chem

December 2024

Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain. Electronic address:

Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes. Different signaling pathways engaged by osmostress converge on the mitochondria to trigger cell death. The mitogen-activated protein kinases (MAPKs) JNK1-1 and JNK1-2 are early activated by hyperosmotic shock and sustained activation of both isoforms accelerates the apoptotic program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!