Microorganisms that release plant-available phosphate from natural soil phosphate stores may serve as biological alternatives to costly and environmentally damaging phosphate fertilizers. To explore this possibility, we engineered a collection of root bacteria to release plant-available orthophosphate from phytate, an abundant phosphate source in many soils. We identified 82 phylogenetically diverse phytase genes, refactored their sequences for optimal expression in , and then synthesized and engineered them into the genomes of three root-colonizing bacteria. Liquid culture assays revealed 41 engineered strains with high levels of phytate hydrolysis. Among these, we identified 12 strains across three bacterial hosts that confer a growth advantage on the model plant when phytate is the sole phosphate source. These data demonstrate that DNA synthesis approaches can be used to generate plant-associated strains with novel phosphate-solubilizing capabilities. Phosphate fertilizers are essential for high-yield agriculture yet are costly and environmentally damaging. Microbes that release soluble phosphate from naturally occurring sources in the soil are appealing, as they may reduce the need for such fertilizers. In this study, we used synthetic biology approaches to create a collection of engineered root-associated microbes with the ability to release phosphate from phytate. We demonstrate that these strains improve plant growth under phosphorus-limited conditions. This represents a first step in the development of phosphate-mining bacteria for future use in crop systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715853 | PMC |
http://dx.doi.org/10.1128/AEM.01210-19 | DOI Listing |
Chemosphere
October 2024
Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China. Electronic address:
Citrate-modified biochar nanoparticles (CBCNPs) represent a promising amendment with plant-available silicon (PASi) releasing capacity. However, the co-transport behavior with released PASi remain poorly understood. This study investigated their co-transport in saturated porous media under various solution chemistry and low molecular weight organic acids (LMWOAs).
View Article and Find Full Text PDFPlant Cell Environ
August 2024
Department of Landscape Architecture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
Soil phosphorus (P) availability affects plant growth and distribution. However, it is still unknown how sex-specific variation in functional traits affects plants' P acquisition and soil P transformation. On wet sites, female poplars had a greater specific root length (SRL), and a higher diversity of arbuscular mycorrhizal fungi (AMF) and phosphate-solubilizing bacteria (PSB).
View Article and Find Full Text PDFPhysiol Plant
May 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time.
View Article and Find Full Text PDFFront Chem
April 2024
Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, India.
Utilization of organic phosphates and insoluble phosphates for the gradual generation of plant-available phosphorus (P) is the only sustainable solution for P fertilization. Enzymatic conversions are one of the best sustainable routes for releasing P to soil. Phosphatase enzyme aids in solubilizing organic and insoluble phosphates to plant-available P.
View Article and Find Full Text PDFHeliyon
April 2024
Civil Engineering Department, Indian Institute of Technology Guwahati, Assam, 781039, India.
Effective management of water resources is essential for crop diversification and food security. This study proposes an Irrigation-Food-Environment-Chance-constrained Programming (IFEC) model for simultaneously optimizing crop planting area, irrigation water, and residual fertilizer considering inflow uncertainty along with farmer preference crop. Eight irrigation water allocation optimal models were constructed, fixing the preference crop cultivation area, while deviations in downstream release, and vegetable crop area cultivation were executed for sensitivity analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!