Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry.

Food Res Int

Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) CCT-CONICET, La Plata, RA1900, Argentina. Electronic address:

Published: September 2019

Lactic acid bacteria (LAB) exert a strong antagonistic activity against many microorganisms including food spoilage organisms and may be used as an alternative to control biofilm formation of pathogens in food industries. The objective of this work was to investigate the ability of fifteen Salmonella strains isolated from poultry environment to form biofilms on different surfaces. In addition, the effect of Lactobacillus kefiri strains 8321 and 83113 and Lactobacillus plantarum 83114 and their surface proteins on biofilm development of Salmonella Enteritidis 115 was studied. The relationship between surface properties of bacteria (hydrophobicity, autoaggregation and coaggregation with lactobacilli) and biofilm formation was also investigated. Most of Salmonella strains were hydrophilic and five strains were moderately hydrophobic. In general, Salmonella strains showed high aggregation abilities (27-54%). S. Enteritidis 106 and S. Typhimurium 102 and 108 showed the highest percentages of autoaggregation. All Salmonella strains tested showed aggregation abilities with the three lactobacilli studied, but the percentage of coaggregation proved to be strain-specific. When comparing stainless steel, glass and polystyrene surfaces, higher levels of biofilm formation occurred on polystyrene plate than on glass surfaces or stainless steel. S. Enteritidis 115 exhibited the greatest attachment to polyestyrene surface. The preincubation or coincubation with the three lactobacilli strains significantly reduced (about 1 log CFU/ml of reduction) the ability of S. Enteritidis 115 to form biofilm compared to the control without lactobacilli. These results were confirmed by confocal microscopy. In the same way, when surface proteins extracted from lactobacilli strains were preincubated or coincubated with S. Enteritidis 115, biofilm formation of this strain was significantly decreased compared to the control. The results obtained showed that these Lactobacillus strains and their surface proteins can be used as alternatives for control of biofilm formation by Salmonella in the poultry industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2019.04.067DOI Listing

Publication Analysis

Top Keywords

biofilm formation
24
salmonella strains
16
enteritidis 115
16
surface proteins
12
strains
9
lactobacillus strains
8
biofilm
8
formation salmonella
8
control biofilm
8
aggregation abilities
8

Similar Publications

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.

View Article and Find Full Text PDF

Biomimetic patterning emerges as a promising antibiotic-free approach to protect medical devices from bacterial adhesion and biofilm formation. The main advantage of this approach lies in its simplicity and scalability for industrial applications. In this study, we employ it to produce antibacterial coatings based on silicone materials, widely used in the healthcare industry.

View Article and Find Full Text PDF

Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel)

January 2025

Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.

Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!