Surface defects have been shown to facilitate electron transfer between Fe(II) and goethite (α-FeOOH) in abiotic systems. It is unclear, however, whether defects also facilitate microbial goethite reduction in anoxic environments where electron transfer between cells and Fe(III) minerals is the limiting factor. Here, we used stable Fe isotopes to differentiate microbial reduction of goethite synthesized by hydrolysis from reduction of goethite that was further hydrothermally treated to remove surface defects. The goethites were reduced by in the presence of an external electron shuttle, and we used ICP-MS to distinguish Fe(II) produced from the reduction of the two types of goethite. When reduced separately, goethite with more defects has an initial rate of Fe(III) reduction about 2-fold higher than goethite containing fewer defects. However, when reduced together, the initial rate of reduction is 6-fold higher for goethite with more defects. Our results suggest that there is a suppression of the reduction of goethite with fewer defects in favor of the reduction of minerals with more defects. In the environment, minerals are likely to contain defects and our data demonstrates that even small changes at the surface of iron minerals may change their bioavailability and determine which minerals will be reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b03208 | DOI Listing |
Water Res
January 2025
Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:
The natural minerals with semiconducting properties possess photochemical activity through generating reactive oxygen species (ROSs) and affect the fate of adsorbed organic pollutants. Iron oxyhydroxides occur in different polymorphic structures under various geological and climatic conditions in natural environment. However, the difference in their photoactivity has not been well understood.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Microbially mediated anaerobic oxidation of methane (AOM) regulates methane (CH) fluxes. Increases in the global atmospheric carbon dioxide (CO) concentration and iron oxide rich in paddy soils influence AOM. However, the response and mechanisms between these two processes and AOM remain unclear.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China. Electronic address:
Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria.
View Article and Find Full Text PDFChemosphere
February 2025
Geology and Sustainable Mining Institute (GSMI), Mohammad VI Polytechnic University (UM6P), Lot 660. Hay Moulay Rachid, 43150, Benguerir, Morocco. Electronic address:
Coal mining produces coal mine waste rock (CMWR), posing significant environmental risks, including acid mine drainage (AMD) if unmanaged. The Jerada Mine in eastern Morocco has accumulated CMWR since it began operations in 1936, with no rehabilitation efforts until 2001. This study assessed the stability of the T08 pile, which has been deposited over five decades across various oxidation zones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!