Architecture of the Bacterial Flagellar Distal Rod and Hook of .

Biomolecules

Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Published: July 2019

The bacterial flagellum is a large molecular complex composed of thousands of protein subunits for motility. The filamentous part of the flagellum, which is called the axial structure, consists of the filament, the hook, and the rods, with other minor components-the cap protein and the hook associated proteins. They share a common basic architecture of subunit arrangement, but each part shows quite distinct mechanical properties to achieve its specific function. The distal rod and the hook are helical assemblies of a single protein, FlgG and FlgE, respectively. They show a significant sequence similarity but have distinct mechanical characteristics. The rod is a rigid, straight cylinder, whereas the hook is a curved tube with high bending flexibility. Here, we report a structural model of the rod constructed by using the crystal structure of a core fragment of FlgG with a density map obtained previously by electron cryomicroscopy. Our structural model suggests that a segment called L-stretch plays a key role in achieving the distinct mechanical properties of the rod using a structurally similar component protein to that of the hook.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681337PMC
http://dx.doi.org/10.3390/biom9070260DOI Listing

Publication Analysis

Top Keywords

distinct mechanical
12
distal rod
8
rod hook
8
protein hook
8
mechanical properties
8
structural model
8
hook
6
rod
5
architecture bacterial
4
bacterial flagellar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!