This paper provides a generic way to fabricate a high-index contrast tapered waveguide platform based on dielectric crystal bonded on glass for sensing applications. As a specific example, KLu(WO) crystal on a glass platform is made by means of a three-technique combination. The methodology used is on-chip bonding, taper cutting with an ultra-precise dicing saw machine and inductively coupled plasma-reactive ion etching (ICP-RIE) as a post-processing step. The high quality tapered waveguides obtained show low surface roughness (25 nm at the top of the taper region), exhibiting propagation losses estimated to be about 3 dB/cm at 3.5 m wavelength. A proof-of-concept with crystal-on-glass tapered waveguides was realized and used for chemical sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680797 | PMC |
http://dx.doi.org/10.3390/mi10070454 | DOI Listing |
Sci Rep
December 2024
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.
View Article and Find Full Text PDFNanophotonics
September 2024
State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Center for Optical & Electromagnetic Research, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
Efficient coupling between optical fibers and on-chip photonic waveguides has long been a crucial issue for photonic chips used in various applications. Edge couplers (ECs) based on an inverse taper have seen widespread utilization due to their intrinsic broadband operation. However, it still remains a big challenge to realize polarization-insensitive low-loss ECs working at the O-band (1,260-1,360 nm), mainly due to the strong polarization dependence of the mode coupling/conversion and the difficulty to fabricate the taper tip with an ultra-small feature size.
View Article and Find Full Text PDFWe report a method for generating uniform, artifact-free total internal reflection fluorescence (TIRF) excitation via a photonic lantern. Our tapered waveguide, consisting of a multimode input and nine few-mode outputs, enables single-shot TIRF illumination from nine azimuthal directions simultaneously without the introduction of nonstationary devices. Utilizing the photonic lantern for multi-beam excitation provides a low-loss mechanism that supports a wide range of light sources, including high-coherence lasers and various wavelengths in the visible spectrum.
View Article and Find Full Text PDFAs the key component in on-chip mode-division multiplexing systems, a compact silicon photonic-lantern mode (de)multiplexer is proposed and demonstrated using the shallow-etched tilt slot waveguide. The proposed six-mode (de)multiplexer is designed as a constant coupling length of 11.7 µm for each mode conversion and eliminates the adiabatic transition tapers for cascaded asymmetric directional couplers, which have an ultra-short total length of 69 µm.
View Article and Find Full Text PDFWe simulate the optical properties of polymer optical waveguides with different refractive index profiles in their cores as coupling components (edge couplers) between single-mode fiber and SiOx waveguides. In this paper, we focus on the single-mode operation of graded-index (GI) core polymer waveguides, for which we previously demonstrated low propagation loss under multimode operation. We design the optimum core structure (size and index contrast) for different refractive index profiles, and then demonstrate the unique optical properties of GI waveguides contributing to the low optical loss compared to the step-index counterparts, in particular, mode field diameter variation and taper angle tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!