AI Article Synopsis

Article Abstract

The possibility of using tires as active sensors opens the door to a huge number of different ways to accomplish this goal. In this case, based on a tire equipped with strain sensors, also known as an Intelligent Tire, relevant vehicle dynamics information can be provided. The purpose of this research is to improve the strain-based methodology for Intelligent Tires to estimate all tire forces, based only on deformations measured in the contact patch. Firstly, through an indoor test rig data, an algorithm has been developed to pick out the relevant features of strain data and correlate them with tire parameters. This information of the tire contact patch is then transmitted to a fuzzy logic system to estimate the tire parameters. To evaluate the reliability of the proposed estimator, the well-known simulation software CarSim has been used to back up the estimation results. The software CarSim has been used to provide the vehicle parameters in complex maneuvers. Finally, the estimations have been checked with the simulation results. This approach has enabled the behaviour of the intelligent tire to be tested for different maneuvers and velocities, providing key information about the tire parameters directly from the only contact that exists between the vehicle and the road.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651276PMC
http://dx.doi.org/10.3390/s19132973DOI Listing

Publication Analysis

Top Keywords

tire parameters
16
estimate tire
12
tire
9
intelligent tires
8
intelligent tire
8
contact patch
8
software carsim
8
parameters
5
strain-based method
4
method estimate
4

Similar Publications

Health impacts of PM emissions from brake pad wear: A comprehensive study on pulmonary, metabolic, and microbiota alterations.

Toxicology

January 2025

National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China. Electronic address:

The environmental impact of harmful particles from tire and brake systems is a growing concern. This study investigated the health impacts of PM emissions from brake pad wear on adult C57BL/6 mice. The mice were exposed to brake pad particles via intratracheal infusion, and various health parameters were assessed.

View Article and Find Full Text PDF

Research on Digital Terrain Construction Based on IMU and LiDAR Fusion Perception.

Sensors (Basel)

December 2024

Institute of Automotive Engineering, Jiangsu University, Zhenjiang 212013, China.

To address the shortcomings of light detection and ranging (LiDAR) sensors in extracting road surface elevation information in front of a vehicle, a scheme for digital terrain construction based on the fusion of an Inertial Measurement Unit (IMU) and LiDAR perception is proposed. First, two sets of sensor coordinate systems were configured, and the parameters of LiDAR and IMU were calibrated. Then, a terrain construction system based on the fusion perception of IMU and LiDAR was established, and improvements were made to the state estimation and mapping architecture.

View Article and Find Full Text PDF

Tire pressure monitoring systems (TPMSs) are essential for maintaining driving safety by continuously monitoring critical tire parameters, such as pressure and temperature, in real time during vehicle operation. Among these parameters, tire pressure is the most significant, necessitating the use of highly precise, cost-effective, and energy-efficient sensing technologies. With the rapid advancements in micro-electro-mechanical system (MEMS) technology, modern automotive sensing and monitoring systems increasingly rely on MEMS sensors due to their compact size, low cost, and low power consumption.

View Article and Find Full Text PDF

Exposure to 6PPD-Q induces dysfunctions of ovarian granulosa cells: Its potential role in PCOS.

J Hazard Mater

December 2024

Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China. Electronic address:

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants.

View Article and Find Full Text PDF

Assessment of changes in soil contact stress depending on tractor tire parameters.

Sci Rep

January 2025

Department of Agricultural Engineering and Safety, Faculty of Engineering, Agriculture Academy, Vytautas Magnus University, Studentų Str. 15A, Akademija, Kaunas, LT-53362, Lithuania.

Soil compaction by agricultural machinery in general by and tractors in particular is an important problem in modern agricultural production. Such compaction destroys the soil structure, creates unfavorable physical parameters of the soil, and as a result, reduces crop yields. Therefore, it is important to clearly establish how the tractor wheels affect the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!