We investigated the performance improvement of tin disulfide channel transistors by graphene contact configurations. From its two-dimensional nature, graphene can make electric contacts only at the outermost layers of the channel. For intralayer current flow, two graphene flakes are contacted at the channel's top or bottom layer. For interlayer current flow, one flake is contacted at the top and bottom of each layer. We compared the transistor performance in terms of current magnitude, mobility, and subthreshold swing between the configurations. From such observations, we deduced that device characteristics depend on resistivity or doping level of individual graphene flakes. We also found that interlayer flow excels in the on-current magnitude and the mobility, and that top-contact configuration excels in the subthreshold swing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab2feb | DOI Listing |
Nanoscale
December 2024
Department of Physics, BITS-Pilani K. K. Birla Goa Campus, Zuarinagar, Goa-403726, India.
Monolayer 2D transition metal dichalcogenides (TMDs) are known for their direct bandgaps and pronounced excitonic effects, which facilitate efficient light absorption and high photoluminescence (PL). In this study, we report a significant enhancement in PL emission from monolayers of p-type molybdenum disulfide (p-MoS), fabricated on conductive substrates-such as indium tin oxide (ITO) and gold (Au). We attribute this behaviour to the reverse injection of charge carriers from substrates to p-MoS and the subsequent localization of electrons and holes in the substrate and p-MoS, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Functional Materials and Devices Division, CSIR- Central Glass and Ceramic Research Institute, Kolkata 700032, West Bengal, India.
Nanotechnology
December 2024
Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan.
Nitrogen-doped carbon dots (N-CDs) and vertically-grown tin disulfide (SnS) nanosheets are synthesized via hydrothermal method and chemical vapor deposition technique, respectively. The SnSnanosheets are directly fabricated on flexible carbon cloth (CC), and then their basal planes are decorated with N-CDs. The as-prepared composite electrodes are used as the counter electrode for the application in dye-sensitized solar cells (DSSCs).
View Article and Find Full Text PDFFood Chem
February 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnSNSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan. Electronic address:
Sodium-ion battery (SIB) with abundant resources has been intensively developed as the efficient energy storage device. Tin disulfide (SnS) is one of the attractive anode materials due to its high capacity and two-dimensional structure. Nevertheless, volume expansion and low conductivity result in the poor rate performance and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!