AI Article Synopsis

  • The study focuses on improving the performance of tin disulfide channel transistors by using different configurations of graphene contacts.
  • It compares the performance based on current magnitude, mobility, and subthreshold swing for intralayer and interlayer current flow.
  • Results reveal that interlayer flow enhances on-current magnitude and mobility, while the top-contact configuration provides better subthreshold swing performance.

Article Abstract

We investigated the performance improvement of tin disulfide channel transistors by graphene contact configurations. From its two-dimensional nature, graphene can make electric contacts only at the outermost layers of the channel. For intralayer current flow, two graphene flakes are contacted at the channel's top or bottom layer. For interlayer current flow, one flake is contacted at the top and bottom of each layer. We compared the transistor performance in terms of current magnitude, mobility, and subthreshold swing between the configurations. From such observations, we deduced that device characteristics depend on resistivity or doping level of individual graphene flakes. We also found that interlayer flow excels in the on-current magnitude and the mobility, and that top-contact configuration excels in the subthreshold swing.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab2febDOI Listing

Publication Analysis

Top Keywords

tin disulfide
8
performance improvement
8
current flow
8
graphene flakes
8
top bottom
8
bottom layer
8
magnitude mobility
8
subthreshold swing
8
graphene
5
graphene surface
4

Similar Publications

Manipulation of trions to enhance the excitonic emission in monolayer p-MoS and its hetero-bilayer by reverse charge injection.

Nanoscale

December 2024

Department of Physics, BITS-Pilani K. K. Birla Goa Campus, Zuarinagar, Goa-403726, India.

Monolayer 2D transition metal dichalcogenides (TMDs) are known for their direct bandgaps and pronounced excitonic effects, which facilitate efficient light absorption and high photoluminescence (PL). In this study, we report a significant enhancement in PL emission from monolayers of p-type molybdenum disulfide (p-MoS), fabricated on conductive substrates-such as indium tin oxide (ITO) and gold (Au). We attribute this behaviour to the reverse injection of charge carriers from substrates to p-MoS and the subsequent localization of electrons and holes in the substrate and p-MoS, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • * This study introduces tin disulfide (SnS) nanoflowers to enhance the properties of polyvinylidene fluoride (PVDF), which is crucial for device performance.
  • * The resulting device can generate 60 volts and efficiently harness mechanical energy from body movements while also excelling in pressure sensing applications.
View Article and Find Full Text PDF

Nitrogen-doped carbon dots (N-CDs) and vertically-grown tin disulfide (SnS) nanosheets are synthesized via hydrothermal method and chemical vapor deposition technique, respectively. The SnSnanosheets are directly fabricated on flexible carbon cloth (CC), and then their basal planes are decorated with N-CDs. The as-prepared composite electrodes are used as the counter electrode for the application in dye-sensitized solar cells (DSSCs).

View Article and Find Full Text PDF

Built-in potential-regulated and exogenous excited electrochemiluminescence sensor based on dual-monomers molecularly imprinted polymer for the biomimetic detection of thiabendazole.

Food Chem

February 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Thiabendazole (TBZ) residues in food pose a serious threat to public health. Herein, an ultrasensitive molecularly imprinted electrochemiluminescence sensor (MIECLS) was developed to detect TBZ, using electron autoregulation in nitrogen-doped graphdiyne‑copper nanowires (NGDY-CuNWs) composite luminophore and cyclic amplification strategy of tin disulfide nanosheets (SnSNSs). NGDY-CuNWs composite luminophores were formed by spontaneous chemisorption to provide electrochemiluminescence signals, and the charge redistribution in it resulted in a built-in potential that improved the electron transfer and redox reaction rate.

View Article and Find Full Text PDF

Sodium-ion battery (SIB) with abundant resources has been intensively developed as the efficient energy storage device. Tin disulfide (SnS) is one of the attractive anode materials due to its high capacity and two-dimensional structure. Nevertheless, volume expansion and low conductivity result in the poor rate performance and stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: