Nanobubbles (NBs) have received wide attention as theranostic agents and been extensively explored in various applications, especially in cancer. The aim of this study was to develop a novel kind of NBs which possess high echogenicity and good stability. This novel ultrasonic nanobubbles (ST68/PLA-PEG NBs) consist of perfluoropropane gas stabilized by Span 60 and Tween 80 (ST68) surfactant and synthesized PLA-PEG-NH block copolymers, and were prepared through the methods of mechanical shaking and low-speed centrifugation. A series of experiments were carried out to evaluate the physicochemical properties, echogenicity and cytotoxicity of this novel NBs. According to the amount ratio of copolymers to surfactant, the NBs were divided into 5 groups (0%, 5%, 10%, 15% and 20%). Group "10%" were the optimum NBs, with a size of 675.6 nm, polydispersity index of 0.39. Moreover, these NBs gave a maximum contrast intensity of 31.0 ± 0.2 dB over baseline and little loss of contrast signal after 10 min. In conclusion, this novel kind of ST68/PLA-PEG NBs which exhibited a high echogenicity and good stability were successfully prepared, and they may offer a potential strategy for drug delivery and tumor-targeted theranostic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2019.105947DOI Listing

Publication Analysis

Top Keywords

nbs
8
novel kind
8
high echogenicity
8
echogenicity good
8
good stability
8
st68/pla-peg nbs
8
development novel
4
novel st68/pla-peg
4
st68/pla-peg stabilized
4
stabilized ultrasound
4

Similar Publications

Autophagy-Targeted Therapy for Pulmonary Inflammation by 2D MX (M = W, Nb; X = S, Se) Nanosheets.

Acta Biomater

January 2025

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Public Health, Tianjin Medical University, Tianjin 300070, China. Electronic address:

For biomedical applications, two-dimensional transition metal dichalcogenides (2D TMDCs) are often combined with other elements or functionalized with specific surface ligands, while their intrinsic biological activities are not yet fully understood. This study investigates the anti-inflammatory potential of four unmodified 2D TMDCs, including WS, WSe, NbS, and NbSe nanosheets, in LPS-activated MH-S cells in vitro and in a mouse model of pulmonary inflammation in vivo. Despite their varying compositions, these 2D TMDCs exhibited comparable anti-inflammatory effects in LPS-activated MH-S cells.

View Article and Find Full Text PDF

Introduction: The objective of our study was to determine the prevalence of a delayed thyroid-stimulating hormone (TSH) rise in infants with congenital hypothyroidism (CH) born in Indiana. Additionally, we sought to determine whether there are differences in clinical or demographic factors associated with this delayed cohort compared to those seen in infants detected early.

Methods: Newborn screen (NBS) results were collected for all cases of CH diagnosed between 2012-2022.

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

In rice, leucine-rich repeat nucleotide-binding site (NLR) proteins are pivotal immune receptors in combating -triggered rice blast. However, the precise molecular mechanism underlying how NLR proteins regulate downstream signalling remains elusive due to the lack of knowledge regarding their direct downstream targets. The NLR protein Pigm-1 was cloned from Shuangkang 77009 in our laboratory.

View Article and Find Full Text PDF

High-Temperature Optoelectronic Transport Behavior of n-TiO Nanoball-Stick/p-Lightly Boron-Doped Diamond Heterojunction.

Materials (Basel)

January 2025

Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.

The n-TiO nanoballs-sticks (TiO NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!