Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin.

Acta Biomater

Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China. Electronic address:

Published: September 2019

Nanostructured titanium implants are recognized for inducing osteogenesis, but the cell signal transductions related to topography are not fully understood. Implant topography is associated with the functionality of osteogenic transcription factors directed by β-catenin in the nucleus, and autophagic flux in the cytoplasm; YAP (Yes-associated protein) is implicated in the destruction of β-catenin in the cytoplasm and is susceptible to autophagic flux. This study investigated whether surface topography of the titanium implant modulates autophagy-lysosome degradation of cytoplasmic YAP. Titanium surfaces were modified with smooth, micro, or nanotopographies. Compared with the smooth and micro surfaces, nanotopography was associated with higher β-catenin nuclear translocation, osteogenic differentiation, and autophagy, and less cytoplasmic YAP. Blockade of the autophagy-lysosome pathway resulted in YAP retention in MC3T3-E1 cells. Cytoplasmic YAP restricted β-catenin nuclear translocation. In the nano surface group, β-catenin accumulation in the nucleus and expression of osteogenesis genes was improved. However, in the absence of cell-cell (confluent) contact, manipulation of YAP and β-catenin localization associated with topography-induced autophagy was lost. In summary, the osteogenesis observed in response to titanium implants with nanotopography involves a signaling link between YAP and β-catenin. STATEMENT OF SIGNIFICANCE: Titanium with rough topographical surfaces is extensively applied in orthopedic and dental clinics. However, the cellular response to topographies that promotes osteogenesis and underlying mechanisms are not fully understood. In this study, we modified titanium surfaces to produce smooth, micro, or nano topographies. Experiments indicated that the nanotopography induced a stronger autophagic response, leading to degraded cytoplasmic YAP. With the lower levels of YAP, β-catenin transported and accumulated in the nucleus to activate TCF/LEF transcription factors, resulting in stronger osteogenesis. Additionally, cell-cell contact was essential in the autophagy-mediated signaling link between YAP and β-catenin. Consequently, our investigation revealed a novel signal transduction in nanotopography-regulated osteogenesis, and supports the modification of biomaterial surfaces to maximize osseointegration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.07.007DOI Listing

Publication Analysis

Top Keywords

yap β-catenin
20
cytoplasmic yap
16
smooth micro
12
yap
11
β-catenin
10
promotes osteogenesis
8
autophagy-mediated signaling
8
titanium implants
8
fully understood
8
transcription factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!