A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement of biocompatibility and carbohydrate absorption control potential of rosmarinic acid through crosslinking into microparticles. | LitMetric

Enhancement of biocompatibility and carbohydrate absorption control potential of rosmarinic acid through crosslinking into microparticles.

Int J Biol Macromol

Nanoscience and Technology Research and Application Center (NANORAC), Faculty of Science and Arts, Department of Chemistry, Turkey; Canakkale Onsekiz Mart University, Terzioglu Campus, 17100, Canakkale, Turkey; Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL, 33620, USA; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 21, Tampa, FL 33612, USA. Electronic address:

Published: September 2019

Rosmarinic acid (RA), a bioflavonoid and antioxidant that exists in plants of the Lamiaceae family, was crosslinked into particles as poly(Rosmarinic Acid) (p(RA)) via an emulsion crosslinking method. The particles were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance C NMR spectroscopy, and thermal gravimetric analysis. The zeta potential values of p(RA) particles were determined at different pHs; the isoelectric point was estimated as pH 1.2. The release of monomeric RA from the particles at 37.5 °C was found to be similar at different pHs, 1.0, 7.4, and 11.0. The effects of p(RA) on hemolysis and coagulation were found to be minimal. The antioxidant activity of p(RA) particles and RA monomer were almost indistinguishable suggesting that p(RA) particles may be used as an antioxidant. On a per weight basis, p(RA) particles were ~66% less cytotoxic to mammalian cells that RA monomer, as assessed using COS-1 cells. In addition, p(RA) was an 8.6-fold stronger inhibitor of α-glycosidase than RA; the ICs of the monomer and particles were 0.121 and 0.014 mg/mL, respectively. The strong inhibitory effect of p(RA) on α-glycosidase, coupled with its reduced cytotoxicity and antioxidant activity, provide new opportunities for the use of p(RA).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.07.032DOI Listing

Publication Analysis

Top Keywords

pra particles
16
pra
9
rosmarinic acid
8
particles
8
antioxidant activity
8
enhancement biocompatibility
4
biocompatibility carbohydrate
4
carbohydrate absorption
4
absorption control
4
control potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!