Genome organization is now understood to be tightly linked to all genomic functions. Thus, the high-resolution mapping of higher-order chromosomal structures via 3C-based approaches has become an integral tool for studying transcriptional and cell cycle regulation, signaling effects or disease onset. Nonetheless, 3C-based protocols are not without caveats, like dependencies on fixation conditions, restriction enzyme pervasiveness in crosslinked chromatin and ligation efficiency. To address some of these caveats, we describe here the streamlined iHi-C 2.0 protocol that allows for the genome-wide interrogation of native spatial chromatin contacts without a need for chemical fixation. This approach improves ligation efficiency and presents minimal material losses, and is thus suitable for analysing samples with limiting cell numbers. Following high throughput sequencing, iHi-C 2.0 generates high signal-to-noise and focal maps of the interactions within and between mammalian chromosomes under native conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2019.07.003 | DOI Listing |
Annu Rev Biomed Eng
January 2025
1Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; email:
Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Efficient Forage Production Mode, Ministry of Agriculture and Rural Affair, College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China.
Grassland degradation is a serious ecological issue in the farming-pastoral ecotone of northern China. Utilizing native grasses for the restoration of degraded grasslands is an effective technological approach. is a superior indigenous grass species for grassland ecological restoration in northern China.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
Unsustainable wild meat hunting poses a significant threat to wildlife and tropical forest ecosystems. While high levels of extraction linked to commercial trade have received significant attention, the sustainability of subsistence hunting by Indigenous Peoples in Africa has been less studied. Understanding how changing lifestyles, particularly the sedentarisation of former hunter-gatherers, have affected the use of forest resources is crucial for wildlife conservation and livelihoods.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Innovative Laser Processing Group, Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Ibaraki, Japan.
Microfluidic sensors incorporated onto chips allow sensor miniaturization and high-throughput analyses for point-of-care or non-clinical analytical tools. Three-dimensional (3D) printing based on femtosecond laser direct writing (fs-LDW) is useful for creating 3D microstructures with high spatial resolution because the structures are printed in 3D space along a designated laser light path. High-performance biochips can be fabricated using the 'ship-in-a-bottle' integration technique, in which functional microcomponents or biomimetic structures are embedded inside closed microchannels using fs-LDW.
View Article and Find Full Text PDFScience
January 2025
Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!