Dissipative Charging of a Quantum Battery.

Phys Rev Lett

Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile.

Published: May 2019

AI Article Synopsis

  • A cyclic unitary process can harness energy from engineered quantum systems that are in thermal equilibrium, essentially functioning as batteries.
  • The battery's charged state, maintained by a dissipative process involving thermal systems, allows for work extraction without ongoing energy input.
  • Examples illustrate scenarios where the battery achieves maximum work extraction and optimal efficiency, particularly when there is full population inversion.

Article Abstract

We show that a cyclic unitary process can extract work from the thermodynamic equilibrium state of an engineered quantum dissipative process. Systems in the equilibrium states of these processes serve as batteries, storing energy. The dissipative process that brings the battery to the active equilibrium state is driven by an agent that couples the battery to thermal systems. The second law of thermodynamics imposes a work cost for the process; however, no work is needed to keep the battery in that charged state. We consider simple examples of these batteries and discuss situations in which the charged state has full population inversion, in which case the extractable work is maximal, and circumstances in which the efficiency of the process is maximal.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.210601DOI Listing

Publication Analysis

Top Keywords

equilibrium state
8
dissipative process
8
charged state
8
process
5
dissipative charging
4
charging quantum
4
battery
4
quantum battery
4
battery cyclic
4
cyclic unitary
4

Similar Publications

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

Heterogeneity is ubiquitous in biological and synthetic active matter systems that are inherently out of equilibrium. Typically, such active mixtures involve not only conservative interactions between the constituents but also nonreciprocal couplings, whose full consequences for the collective behavior still remain elusive. Here, we study a minimal active nonreciprocal mixture with both symmetric isotropic and nonreciprocal polar interactions.

View Article and Find Full Text PDF

Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solid-state materials across defined spatial distributions remains an unrealized technological opportunity.

View Article and Find Full Text PDF

This study proposes and analyses a revised predator-prey model that accounts for a twofold Allee impact on the rate of prey population expansion. Employing the Caputo fractional-order derivative, we account for memory impact on the suggested model. We proceed to examine the significant mathematical aspects of the suggested model, including the uniqueness, non-negativity, boundedness, and existence of solutions to the noninteger order system.

View Article and Find Full Text PDF

Variance in the properties of optical mesoscopic probes is often a limiting factor in applications. In the thermodynamic limit, the smaller the probe, the larger the relative variance. However, specific viral protein cages can assemble efficiently outside the bounds of statistical fluctuations at equilibrium through a process that is characterized by intrinsic quality-control and self-limiting capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!