We investigated spin-to-charge conversion in sputtered BiSe/CoFeB heterostructures with in-plane magnetization at room temperature. High spin-to-charge conversion voltage signals have been observed at room temperature. The transmission electron microscope images show that the sputtered bismuth selenide thin films are nanogranular in structure. The spin-pumping voltage decreases with an increase in the size of the grains. The inverse Edelstein effect length (λ) is estimated to be as large as 0.32 nm. The large λ is due to the spin-momentum locking and is further enhanced by quantum confinement in the nanosized grains of the sputtered bismuth selenide films. We also investigated the effect on spin-pumping voltage due to the insertion of layers of MgO and Ag. The MgO insertion layer has almost completely suppressed the spin-pumping voltage, whereas the Ag insertion layer has enhanced the λ by 43%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b05011DOI Listing

Publication Analysis

Top Keywords

spin-to-charge conversion
12
sputtered bismuth
12
bismuth selenide
12
room temperature
12
spin-pumping voltage
12
high spin-to-charge
8
conversion sputtered
8
selenide thin
8
thin films
8
voltage insertion
8

Similar Publications

The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully.

View Article and Find Full Text PDF

Orbital Current Pumping From Ultrafast Light-driven Antiferromagnetic Insulator.

Adv Mater

December 2024

Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

The orbital Hall effect originating from light materials with weak spin-orbit coupling, has attracted considerable interest in spintronic applications. Recent studies demonstrate that orbital currents can be generated from charge currents through the orbital Hall effect in ferromagnetic materials. However, the generation of orbital currents in antiferromagnets has so far been elusive.

View Article and Find Full Text PDF

Microscopic origins of charge currents and electromagnetic (EM) radiation generated by them in spintronic THz emitters-such as, femtosecond laser pulse-driven single magnetic layer or its heterostructures with a nonmagnetic layer hosting strong spin-orbit coupling (SOC)-remain poorly understood despite nearly three decades since the discovery of ultrafast demagnetization. We introduce a first-principles method to compute these quantities, where the dynamics of charge and current densities is obtained from real-time time-dependent density functional theory, which are then fed into the Jefimenko equations for properly retarded electric and magnetic field solutions of the Maxwell equations. By Fourier transforming different time-dependent terms in the Jefimenko equations, we unravel that in the 0.

View Article and Find Full Text PDF

Current silicon-based CMOS devices face physical limitations in downscaling size and power loss, restricting their capability to meet the demands for data storage and information processing of emerging technologies. One possible alternative is to encode the information in a non-volatile magnetic state and manipulate this spin state electronically, as in spintronics. However, current spintronic devices rely on the current-driven control of magnetization, which involves Joule heating and power dissipation.

View Article and Find Full Text PDF

We report experimental investigations of spin-to-charge current conversion and charge transfer (CT) dynamics at the interface of the graphene/WS van der Waals heterostructure. Pure spin current was produced by the spin precession in the microwave-driven ferromagnetic resonance of a permalloy film (Py=NiFe) and injected into the graphene/WS heterostructure through a spin pumping process. The observed spin-to-charge current conversion in the heterostructure is attributed to the inverse Rashba-Edelstein effect (IREE) at the graphene/WS interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!