Marine sponges can form stable partnerships with a wide diversity of microbes and viruses, and this high intraspecies symbiont specificity makes them ideal models for exploring how host-associated viromes respond to changing environmental conditions. Here we exposed the abundant Great Barrier Reef sponge Rhopaloiedes odorabile to elevated seawater temperature for 48 h and utilised a metaviromic approach to assess the response of the associated viral community. An increase in endogenous retro-transcribing viruses within the Caulimorviridae and Retroviridae families was detected within the first 12 h of exposure to 32 °C, and a 30-fold increase in retro-transcribing viruses was evident after 48 h at 32 °C. Thermally stressed sponges also exhibited a complete loss of ssDNA viruses which were prevalent in field samples and sponges from the control temperature treatment. Despite these viromic changes, functional analysis failed to detect any loss or gain of auxiliary metabolic genes, indicating that viral communities are not providing a direct competitive advantage to their host under thermal stress. In contrast, endogenous sponge retro-transcribing viruses appear to be replicating under thermal stress, and consistent with retroviral infections in other organisms, may be contributing to the previously described rapid decline in host health evident at elevated temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1758-2229.12782 | DOI Listing |
Polymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Metallurgy, Northeastern University, Shenyang 110819, China.
The constitutive model was commonly used to describe the flow stress of materials under specific strain, strain rate, and temperature conditions. In order to study the thermal-mechanical behavior of DH460 continuous casting steel during the solidification end heavy reduction (HR) process accurately. The high-temperature compression experiment was carried out, and phenomenological constitutive models were established based on the experimental results.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.
Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Salerno, 84084 Fisciano, SA, Italy.
This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!