Low-abundance phosphotyrosine (pTyr)-mediated signaling protein complexes play critical roles in cancer signaling. The precise and comprehensive profiling of these pTyr-mediated protein complexes remains challenging because of their dynamic nature and weak binding affinity. Taking advantage of the SH2 domains modified with trifunctional chemical probes and genetic mutations (termed Photo-pTyr-scaffold), we developed a Photo-pTyr-scaffold-based forward-phase protein array that can be used to specifically capture complexes by developing an engineered SH2 domain, photoaffinity cross-linking, and antibody-based measuring weak pTyr-mediated protein complexes from complex biological samples in a 96-well microplate format. This platform demonstrated good precision for quantitation ( = 0.99) and high sensitivity by which only 5 μg of whole cell lysates is needed. We successfully applied the technology for profiling the dynamic EGF-stimulation-dependent EGFR signaling protein complexes across four different time courses (i.e., 0, 2, 5, 10, and 30 min) in a high-throughput manner. We further evaluated the modulation of EGFR-GRB2-SHC1 protein complexes by FDA-approved EGFR kinase inhibitor erlotinib, demonstrating the feasibility of this approach for high-throughput drug screening. The Photo-pTyr-scaffold-based forward-phase protein array could be generically applicable for exploring the dynamic pTyr signaling complexes in various biological systems and screening for related drugs in a high-throughput manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b01845 | DOI Listing |
J Gastrointest Cancer
January 2025
Colorectal Research Center, Imam Khomeini Hospital complex, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, Iran.
Purpose: Carcinoembryonic antigen (CEA) is an important prognostic factor for rectal cancer. This study aims to introduce a novel cutoff point for CEA within the normal range to improve prognosis prediction and enhance patient stratification in rectal cancer patients.
Methods: A total of 316 patients with stages I to III rectal cancer who underwent surgical tumor resection were enrolled.
Mol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
Acne vulgaris is a common and challenging condition to treat. To assess the effect of botulinum toxin type A (BTX-A) in the treatment of mild to moderate acne vulgaris. This study included 30 patients with mild to moderate acne vulgaris treated with intradermal injections of diluted BTX-A (microbotox) on the cheek in a regular grid pattern using very small droplets (microbotox).
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!