A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Side-Chain Polymers as Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells-The Impact of Substituents' Positions in Carbazole on Device Performance. | LitMetric

Side-chain polymers have the potential to be excellent dopant-free hole-transporting materials (HTMs) for perovskite solar cells (PSCs) because of their unique characteristics, such as tunable energy levels, high charge mobility, good solubility, and excellent film-forming ability. However, there has been less research focusing on side-chain polymers for PSCs. Here, two side-chain polystyrenes with triphenylamine substituents on carbazole moieties were designed and characterized. The properties of the side-chain polymers were tuned finely, including the photophysical and electrochemical properties and charge mobilities, by changing the positions of triphenylamine substituents on carbazole. Owing to the higher mobility and charge extraction ability, the polymer with the triphenylamine substituent on the 3,6-positions of the carbazole unit showed higher performance with power conversion efficiency (PCE) of 18.45%, which was much higher than the PCE (16.78%) of with 2,7-positions substituted. These results clearly demonstrated that side-chain polymers can act as promising HTMs for PSC applications and the performance of side-chain polymers could be optimized by carefully tuning the structure of the monomer, which provides a new strategy to design new kinds of side-chain polymers and obtain high-performance dopant-free HTMs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b07859DOI Listing

Publication Analysis

Top Keywords

side-chain polymers
28
side-chain
8
dopant-free hole-transporting
8
hole-transporting materials
8
perovskite solar
8
performance side-chain
8
triphenylamine substituents
8
substituents carbazole
8
polymers
6
polymers dopant-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!