Materials with the formula Sr CoNb Ti O (x=1.00, 0.70; δ=number of oxygen vacancies) present a cubic perovskite-like structure. They are easily and reversibly reduced in N or Ar and re-oxidized in air upon heating. Oxidation by water (wet N ), involving splitting of water at a temperature as low as 700 °C, produces hydrogen. Both compounds displayed outstanding H production in the first thermochemical cycle, the Sr CoNb Ti O material retaining its outstanding performance upon cycling, whereas the hydrogen yield of the x=1 oxide showed a continuous decay. The retention of the materials' ability to promote water splitting correlated with their structural, chemical, and redox reversibility upon cycling. On reduction/oxidation, Co ions reversibly changed their oxidation state to compensate the release/recovery of oxygen in both compounds. However, in Sr CoTiO , two phases with different oxygen contents segregated, whereas in Sr CoNb Ti O this effect was not evident. Therefore, this latter material displayed a hydrogen production as high as 410 μmol g after eight thermochemical cycles at 700 °C, which is among the highest ever reported, making this perovskite a promising candidate for thermosolar water splitting in real devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201901484 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2025
Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany.
Reaction of Co(NCS) with 4-methyl-pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)(CHN)] . The asymmetric unit consists of two crystallographically independent thio-cyanate anions and two crystallographically independent 4-methyl-pyridine coligands in general positions, as well as of two different Co cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl-pyridine ligands are disordered and were refined using a split model.
View Article and Find Full Text PDFChemSusChem
January 2025
Qingdao University of Science and Technology, College of Chemistry and Molecular Engineering, No. 53, Zhengzhou Road, Qingdao, 266042, Qingdao, CHINA.
To improve water splitting efficiency and enhance energy utilization, it is crucial to develop catalysts with excellent activity, long-term stability, and low cost. In this study, we synthesized a three-dimensional nanostructured amorphous CoMoP/NF bifunctional catalyst for both the hydrogen evolution reaction (HER) and the 5-hydroxymethylfurfural oxidation reaction (HMFOR), using a sacrificial template method. Benefiting from element doping regulation and morphology control, CoMoP/NF exhibited outstanding catalytic activity.
View Article and Find Full Text PDFChemphyschem
January 2025
Friedrich-Schiller-University Jena, Institute of Physical Chemistry, Helmholtzweg 4, 7743, Jena, GERMANY.
The design and development of particulate photocatalysts has been an attractive strategy to incorporate earth-abundant metal ions to water splitting devices. Herein, we synthesized CoFe-Prussian blue (PB) coated ZnO origami core-shell nanostructures (PB@ZnO) with different mass ratio of PB components and investigated their photocatalytic water oxidation activities in the presence of an electron scavenger. Photocatalytic experiments reveal that the integration of PB on ZnO boosts the oxygen evolution rate by a factor of ~2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Astronomy, the University of Manchester, Manchester, M13 9PL, UK.
ACS Appl Mater Interfaces
January 2025
Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China.
Two dimensional β-ketoamine covalent organic frameworks (2D TP-COFs) are one category of promising metal-free catalysts for photocatalytic overall water splitting (OWS) because of their unusual stability and versatile electronic/optical properties. However, none of the currently reported TP-COFs can accomplish the hydrogen evolution (HER) and oxygen evolution reactions (OER) simultaneously without adding any sacrificial agents and cocatalysts. To address this challenging issue, we rationally designed 23 2D TP-COFs by regulating the linkage groups and comprehensively evaluated their OWS activity by using the first-principles method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!