Objective: Chronic hepatitis is a global health problem especially in Egypt. Hepatic fibrosis is a common end clinical manifestation of many chronic liver diseases. Although it is a wound-healing process, excessive accumulation of fibrillary collagen leads to architectural damage, cirrhosis and liver failure. Recently, a few studies have linked Hippo pathway effectors of yes-associated protein (YAP) and its paralog transcriptional coactivator with PDZ-binding motif (TAZ) to extracellular matrix deposition and ongoing fibrosis.

Material And Method: Immunohistochemical expression of YAP and TAZ were analyzed in 121 liver needle core biopsies (91 core biopsies of chronic viral hepatitis, 20 biopsies of autoimmune hepatitis and 10 normal liver cores).

Results: YAP and TAZ nuclear localization was absent in all normal liver cores. Autoimmune hepatitis cases showed higher nuclear expression of both YAP and TAZ in comparison to chronic viral cases. YAP and TAZ expression were correlated with severity of hepatocyte injury together with fibrosis in chronic viral cases but these correlations were absent in AIH cases despite the pronounced increase of YAP and TAZ nuclear localization.

Conclusion: The correlation between Hippo effectors activation and fibrosis in chronic viral hepatitis patients emphasize their role in the development and advancement of hepatic scarring and highlight the use of both YAP and TAZ as novel targets to ameliorate liver fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512671PMC
http://dx.doi.org/10.5146/tjpath.2019.01463DOI Listing

Publication Analysis

Top Keywords

yap taz
24
chronic viral
16
immunohistochemical expression
8
hippo pathway
8
pathway effectors
8
chronic hepatitis
8
expression yap
8
core biopsies
8
viral hepatitis
8
autoimmune hepatitis
8

Similar Publications

Article Synopsis
  • Immune checkpoint therapies have revolutionized cancer treatment but face challenges like low response rates and drug resistance, highlighting the need for a better understanding of the tumor microenvironment (TME).
  • Recent studies show that biomechanical forces within the TME significantly impact immune responses and tumor progression, indicating that manipulating these forces could enhance immune activation against tumors.
  • The review discusses key biomechanical mechanisms, the role of the extracellular matrix, and potential clinical applications, aiming to provide insights for discovering new therapeutic targets.
View Article and Find Full Text PDF

Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.

View Article and Find Full Text PDF

Pannexin 1 crosstalk with the Hippo pathway in malignant melanoma.

FEBS J

January 2025

Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.

In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.

View Article and Find Full Text PDF

Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!