Microbial granular biofilms are spherical, multi-layered aggregates composed of communities of bacterial cells encased in a complex matrix of hydrated extracellular polymeric substances (EPS). While granular aggregates are increasingly used for applications in industrial and municipal wastewater treatment, their underlying mechanical properties are poorly understood. The challenges of viscoelastic characterization for these structures are due to their spherical geometry, spatially heterogeneous properties, and their delicate nature. In this study, we report a model-based approach for nondestructive characterization of viscoelastic properties (shear modulus and shear viscosity) of alginate spheres with different concentrations, which was motivated by our measurements in granular biofilms. The characterization technique relies on experimental measurements of circumferential elastic wave speeds as a function of frequency in the samples using the Optical Coherence Elastography (OCE) technique. A theoretical model was developed to estimate the viscoelastic properties of the samples from OCE data through inverse analysis. This work represents the first attempt to explore elastic waves for mechanical characterization of granular biofilms. The combination of the OCE technique and the theoretical model presented in this paper provides a framework that can facilitate quantitative viscoelastic characterization of samples with curved geometries and the study of the relationships between morphology and mechanical properties in granular biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm00739c | DOI Listing |
Environ Res
January 2025
Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
Stable inhibition of nitrite-oxidizing bacteria (NOB) is a significant challenge in achieving partial nitrification (PN) and partial nitrification-anaerobic ammonia oxidation (PNA). Growing evidence suggested that NOB can develop resistance to suppression over time, leading to the re-enrichment of NOB within reactors. To address these issues, this study aimed to achieve stable PN by regulating SRT to selectively washout NOB during the lag phase of activity recovery following FA/FNA exposure.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:
In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).
View Article and Find Full Text PDFEnviron Res
December 2024
School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China. Electronic address:
Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD values consistently exceeding 1.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
The scarcity of seed sludge poses a significant barrier to the advancement of anaerobic ammonia oxidation (anammox) process. In this investigation, two alternative sludge (anaerobic granular sludge (AGS) and activated flocculent sludge (AFS)) were employed to start up the anammox process in internal circulation (IC) reactors with the hydroxyapatite (HAP) strategy. Both reactors achieved rapid start-up on days 83 and 53, respectively.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:
Biofilms offer a solution to the challenge of low biomass retention faced in mainstream partial nitritation/Anammox (PN/A) applications. In this study, a one-stage PN/A reactor derived from initial granular sludge was successfully transformed into a biofilm system using shedding carriers. Environmental stressors, such as ammonium nitrogen concentration and organic matter, significantly affected the competitive dynamics and dominant species composition between Ca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!