Self-propelled particles have been experimentally shown to orbit spherical obstacles and move along surfaces. Here, we theoretically and numerically investigate this behavior for a hydrodynamic squirmer interacting with spherical objects and flat walls using three different methods of approximately solving the Stokes equations: The method of reflections, which is accurate in the far field; lubrication theory, which describes the close-to-contact behavior; and a lattice Boltzmann solver that accurately accounts for near-field flows. The method of reflections predicts three distinct behaviors: orbiting/sliding, scattering, and hovering, with orbiting being favored for lower curvature as in the literature. Surprisingly, it also shows backward orbiting/sliding for sufficiently strong pushers, caused by fluid recirculation in the gap between the squirmer and the obstacle leading to strong forces opposing forward motion. Lubrication theory instead suggests that only hovering is a stable point for the dynamics. We therefore employ lattice Boltzmann to resolve this discrepancy and we qualitatively reproduce the richer far-field predictions. Our results thus provide insight into a possible mechanism of mobility reversal mediated solely through hydrodynamic interactions with a surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9sm00692c | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
Cyclic ion mobility-mass spectrometry (cIM-MS) is a powerful technique for separating and identifying isomeric mixtures of compounds. When coupled with chromatography, cIM-MS creates a multidimensional separation system, with high resolving power and peak capacity. In this study, we report the cyclic ion mobility separation and high-resolution mass spectrometry identification of four regioisomers of a Sugammadex-related impurity, abbreviated as Di-OH-SGM.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 China. Electronic address:
Indium nitride (InN) exhibited significant potential as a photoelectrode material for photoelectrochemical (PEC) water splitting, attributed to its superior light absorption, high electron mobility, and direct bandgap. However, its practical application was constrained by rapid carrier recombination occurring within the bulk and at the surface. To address these limitations, researchers developed InN/UiO-66 heterojunction photoelectrodes, which markedly enhanced PEC water splitting for hydrogen production.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Laboratory for Robot Mobility Localization and Scene Deep Learning Technology, Guizhou Equipment Manufacturing Polytechnic, Guiyang 550025, China.
In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!