Anomalously high x-ray scattering at a wavelength of 0.154 nm by super-polished substrates of fused silica, which were etched by the argon ions with the energy of 300 eV, is detected. The scattering intensity increases monotonically with increasing of the etching depth. The effect is explained by the scattering on the volume inhomogeneities with the lateral size greater than 0.5 μm of the subsurface "damaged" layer. The concentration of volume inhomogeneities increases with the increase of the fluence of argon ions, but the concentration of implanted argon atoms in the layer quickly reaches the maximum value and then begins a trend of going down. The thickness of the "damaged" layer is approximately equal to the penetration depth of the Ar atoms and can be directly determined from the x-ray specular reflection. It is shown that the presence of volume inhomogeneities of the subsurface "damaged" layer does not affect the geometric roughness of the surface. The observed effect imposes limitations on the usage of grazing incidence x-ray optics without reflective coatings and of the diffuse x-ray scattering (DXRS) method for studying the substrate roughness. A new method that potentially enables to evaluate the applicability of the DXRS method in practice is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-190495DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
12
volume inhomogeneities
12
"damaged" layer
12
fused silica
8
argon ions
8
subsurface "damaged"
8
dxrs method
8
x-ray
5
scattering fused
4
silica surface
4

Similar Publications

Functionalization of Graphene by Interfacial Engineering in Thermally Conductive Nanofibrillated Cellulose Films.

Langmuir

January 2025

Research Center of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai 200444, P. R. China.

Flexible nanocomposites incorporating nanofibrillated cellulose (NFC) hold significant promise for thermal management applications. However, their heat dissipation performance is primarily constrained by the interfacial thermal resistance (). In this work, 1-pyrenemethylamine hydrochloride (PyNH) noncovalent functionalized graphene subsequently self-assembled with NFC through a vacuum-assisted filtration technique.

View Article and Find Full Text PDF

Electrochemical Small-Angle X-ray Scattering for Potential-Dependent Structural Analysis of Redox Enzymes.

Langmuir

January 2025

Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.

Various methods exist for exploring different aspects of these mechanisms. However, techniques for investigating structural differences between the reduced and oxidized forms of an enzyme are limited. Here, we propose electrochemical small-angle X-ray scattering (EC-SAXS) as a novel method for potential-dependent structural analysis of redox enzymes and redox-active proteins.

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF

We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.

View Article and Find Full Text PDF

Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!